Metamath Proof Explorer
Description: Membership in a half-open integer interval. (Contributed by Glauco
Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
elfzod.1 |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
|
|
elfzod.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
|
elfzod.3 |
⊢ ( 𝜑 → 𝐾 < 𝑁 ) |
|
Assertion |
elfzod |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elfzod.1 |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
elfzod.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
|
elfzod.3 |
⊢ ( 𝜑 → 𝐾 < 𝑁 ) |
4 |
|
elfzo2 |
⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) |
5 |
1 2 3 4
|
syl3anbrc |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ) |