Metamath Proof Explorer


Theorem elfzod

Description: Membership in a half-open integer interval. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elfzod.1
|- ( ph -> K e. ( ZZ>= ` M ) )
elfzod.2
|- ( ph -> N e. ZZ )
elfzod.3
|- ( ph -> K < N )
Assertion elfzod
|- ( ph -> K e. ( M ..^ N ) )

Proof

Step Hyp Ref Expression
1 elfzod.1
 |-  ( ph -> K e. ( ZZ>= ` M ) )
2 elfzod.2
 |-  ( ph -> N e. ZZ )
3 elfzod.3
 |-  ( ph -> K < N )
4 elfzo2
 |-  ( K e. ( M ..^ N ) <-> ( K e. ( ZZ>= ` M ) /\ N e. ZZ /\ K < N ) )
5 1 2 3 4 syl3anbrc
 |-  ( ph -> K e. ( M ..^ N ) )