Step |
Hyp |
Ref |
Expression |
1 |
|
uzublem.1 |
|- F/ j ph |
2 |
|
uzublem.2 |
|- F/_ j X |
3 |
|
uzublem.3 |
|- ( ph -> M e. ZZ ) |
4 |
|
uzublem.4 |
|- Z = ( ZZ>= ` M ) |
5 |
|
uzublem.5 |
|- ( ph -> Y e. RR ) |
6 |
|
uzublem.6 |
|- W = sup ( ran ( j e. ( M ... K ) |-> B ) , RR , < ) |
7 |
|
uzublem.7 |
|- X = if ( W <_ Y , Y , W ) |
8 |
|
uzublem.8 |
|- ( ph -> K e. Z ) |
9 |
|
uzublem.9 |
|- ( ( ph /\ j e. Z ) -> B e. RR ) |
10 |
|
uzublem.10 |
|- ( ph -> A. j e. ( ZZ>= ` K ) B <_ Y ) |
11 |
6
|
a1i |
|- ( ph -> W = sup ( ran ( j e. ( M ... K ) |-> B ) , RR , < ) ) |
12 |
|
ltso |
|- < Or RR |
13 |
12
|
a1i |
|- ( ph -> < Or RR ) |
14 |
|
fzfid |
|- ( ph -> ( M ... K ) e. Fin ) |
15 |
4
|
eluzelz2 |
|- ( K e. Z -> K e. ZZ ) |
16 |
8 15
|
syl |
|- ( ph -> K e. ZZ ) |
17 |
3
|
zred |
|- ( ph -> M e. RR ) |
18 |
17
|
leidd |
|- ( ph -> M <_ M ) |
19 |
8 4
|
eleqtrdi |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
20 |
|
eluzle |
|- ( K e. ( ZZ>= ` M ) -> M <_ K ) |
21 |
19 20
|
syl |
|- ( ph -> M <_ K ) |
22 |
3 16 3 18 21
|
elfzd |
|- ( ph -> M e. ( M ... K ) ) |
23 |
22
|
ne0d |
|- ( ph -> ( M ... K ) =/= (/) ) |
24 |
|
fzssuz |
|- ( M ... K ) C_ ( ZZ>= ` M ) |
25 |
4
|
eqcomi |
|- ( ZZ>= ` M ) = Z |
26 |
24 25
|
sseqtri |
|- ( M ... K ) C_ Z |
27 |
|
id |
|- ( j e. ( M ... K ) -> j e. ( M ... K ) ) |
28 |
26 27
|
sselid |
|- ( j e. ( M ... K ) -> j e. Z ) |
29 |
28 9
|
sylan2 |
|- ( ( ph /\ j e. ( M ... K ) ) -> B e. RR ) |
30 |
1 13 14 23 29
|
fisupclrnmpt |
|- ( ph -> sup ( ran ( j e. ( M ... K ) |-> B ) , RR , < ) e. RR ) |
31 |
11 30
|
eqeltrd |
|- ( ph -> W e. RR ) |
32 |
5 31
|
ifcld |
|- ( ph -> if ( W <_ Y , Y , W ) e. RR ) |
33 |
7 32
|
eqeltrid |
|- ( ph -> X e. RR ) |
34 |
9
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> B e. RR ) |
35 |
5
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> Y e. RR ) |
36 |
33
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> X e. RR ) |
37 |
10
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> A. j e. ( ZZ>= ` K ) B <_ Y ) |
38 |
|
eqid |
|- ( ZZ>= ` K ) = ( ZZ>= ` K ) |
39 |
16
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> K e. ZZ ) |
40 |
4
|
eluzelz2 |
|- ( j e. Z -> j e. ZZ ) |
41 |
40
|
ad2antlr |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> j e. ZZ ) |
42 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> K <_ j ) |
43 |
38 39 41 42
|
eluzd |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> j e. ( ZZ>= ` K ) ) |
44 |
|
rspa |
|- ( ( A. j e. ( ZZ>= ` K ) B <_ Y /\ j e. ( ZZ>= ` K ) ) -> B <_ Y ) |
45 |
37 43 44
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> B <_ Y ) |
46 |
|
max2 |
|- ( ( W e. RR /\ Y e. RR ) -> Y <_ if ( W <_ Y , Y , W ) ) |
47 |
31 5 46
|
syl2anc |
|- ( ph -> Y <_ if ( W <_ Y , Y , W ) ) |
48 |
47 7
|
breqtrrdi |
|- ( ph -> Y <_ X ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> Y <_ X ) |
50 |
34 35 36 45 49
|
letrd |
|- ( ( ( ph /\ j e. Z ) /\ K <_ j ) -> B <_ X ) |
51 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ -. K <_ j ) -> -. K <_ j ) |
52 |
|
uzssre |
|- ( ZZ>= ` M ) C_ RR |
53 |
4 52
|
eqsstri |
|- Z C_ RR |
54 |
53
|
sseli |
|- ( j e. Z -> j e. RR ) |
55 |
54
|
ad2antlr |
|- ( ( ( ph /\ j e. Z ) /\ -. K <_ j ) -> j e. RR ) |
56 |
53 8
|
sselid |
|- ( ph -> K e. RR ) |
57 |
56
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ -. K <_ j ) -> K e. RR ) |
58 |
55 57
|
ltnled |
|- ( ( ( ph /\ j e. Z ) /\ -. K <_ j ) -> ( j < K <-> -. K <_ j ) ) |
59 |
51 58
|
mpbird |
|- ( ( ( ph /\ j e. Z ) /\ -. K <_ j ) -> j < K ) |
60 |
9
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> B e. RR ) |
61 |
6 31
|
eqeltrrid |
|- ( ph -> sup ( ran ( j e. ( M ... K ) |-> B ) , RR , < ) e. RR ) |
62 |
6 61
|
eqeltrid |
|- ( ph -> W e. RR ) |
63 |
62
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> W e. RR ) |
64 |
5 62
|
ifcld |
|- ( ph -> if ( W <_ Y , Y , W ) e. RR ) |
65 |
7 64
|
eqeltrid |
|- ( ph -> X e. RR ) |
66 |
65
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> X e. RR ) |
67 |
|
simpll |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> ph ) |
68 |
3
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> M e. ZZ ) |
69 |
16
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> K e. ZZ ) |
70 |
4
|
eleq2i |
|- ( j e. Z <-> j e. ( ZZ>= ` M ) ) |
71 |
70
|
biimpi |
|- ( j e. Z -> j e. ( ZZ>= ` M ) ) |
72 |
71
|
ad2antlr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> j e. ( ZZ>= ` M ) ) |
73 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> j < K ) |
74 |
72 69 73
|
elfzod |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> j e. ( M ..^ K ) ) |
75 |
|
elfzouz |
|- ( j e. ( M ..^ K ) -> j e. ( ZZ>= ` M ) ) |
76 |
75 25
|
eleqtrdi |
|- ( j e. ( M ..^ K ) -> j e. Z ) |
77 |
74 76 40
|
3syl |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> j e. ZZ ) |
78 |
|
eluzle |
|- ( j e. ( ZZ>= ` M ) -> M <_ j ) |
79 |
71 78
|
syl |
|- ( j e. Z -> M <_ j ) |
80 |
79
|
ad2antlr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> M <_ j ) |
81 |
74 76 54
|
3syl |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> j e. RR ) |
82 |
56
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> K e. RR ) |
83 |
81 82 73
|
ltled |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> j <_ K ) |
84 |
68 69 77 80 83
|
elfzd |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> j e. ( M ... K ) ) |
85 |
1 29
|
ralrimia |
|- ( ph -> A. j e. ( M ... K ) B e. RR ) |
86 |
|
fimaxre3 |
|- ( ( ( M ... K ) e. Fin /\ A. j e. ( M ... K ) B e. RR ) -> E. y e. RR A. j e. ( M ... K ) B <_ y ) |
87 |
14 85 86
|
syl2anc |
|- ( ph -> E. y e. RR A. j e. ( M ... K ) B <_ y ) |
88 |
1 29 87
|
suprubrnmpt |
|- ( ( ph /\ j e. ( M ... K ) ) -> B <_ sup ( ran ( j e. ( M ... K ) |-> B ) , RR , < ) ) |
89 |
67 84 88
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> B <_ sup ( ran ( j e. ( M ... K ) |-> B ) , RR , < ) ) |
90 |
89 6
|
breqtrrdi |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> B <_ W ) |
91 |
|
max1 |
|- ( ( W e. RR /\ Y e. RR ) -> W <_ if ( W <_ Y , Y , W ) ) |
92 |
31 5 91
|
syl2anc |
|- ( ph -> W <_ if ( W <_ Y , Y , W ) ) |
93 |
92 7
|
breqtrrdi |
|- ( ph -> W <_ X ) |
94 |
93
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> W <_ X ) |
95 |
60 63 66 90 94
|
letrd |
|- ( ( ( ph /\ j e. Z ) /\ j < K ) -> B <_ X ) |
96 |
59 95
|
syldan |
|- ( ( ( ph /\ j e. Z ) /\ -. K <_ j ) -> B <_ X ) |
97 |
50 96
|
pm2.61dan |
|- ( ( ph /\ j e. Z ) -> B <_ X ) |
98 |
97
|
ex |
|- ( ph -> ( j e. Z -> B <_ X ) ) |
99 |
1 98
|
ralrimi |
|- ( ph -> A. j e. Z B <_ X ) |
100 |
|
nfv |
|- F/ x A. j e. Z B <_ X |
101 |
|
nfcv |
|- F/_ j x |
102 |
101 2
|
nfeq |
|- F/ j x = X |
103 |
|
breq2 |
|- ( x = X -> ( B <_ x <-> B <_ X ) ) |
104 |
102 103
|
ralbid |
|- ( x = X -> ( A. j e. Z B <_ x <-> A. j e. Z B <_ X ) ) |
105 |
100 104
|
rspce |
|- ( ( X e. RR /\ A. j e. Z B <_ X ) -> E. x e. RR A. j e. Z B <_ x ) |
106 |
33 99 105
|
syl2anc |
|- ( ph -> E. x e. RR A. j e. Z B <_ x ) |