Step |
Hyp |
Ref |
Expression |
1 |
|
infxrunb3rnmpt.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
infxrunb3rnmpt.2 |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
infxrunb3rnmpt.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
4 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
5 |
4
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ≤ 𝑦 |
7 |
5 6
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
10 |
9
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ* ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
11 |
8 3 10
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
13 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦 ) → 𝐵 ≤ 𝑦 ) |
14 |
|
breq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
15 |
14
|
rspcev |
⊢ ( ( 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝐵 ≤ 𝑦 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
16 |
12 13 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
17 |
16
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝐵 ≤ 𝑦 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) ) |
18 |
1 7 17
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
19 |
|
nfv |
⊢ Ⅎ 𝑧 ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
20 |
|
vex |
⊢ 𝑧 ∈ V |
21 |
9
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
22 |
20 21
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
23 |
22
|
biimpi |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
24 |
14
|
biimpcd |
⊢ ( 𝑧 ≤ 𝑦 → ( 𝑧 = 𝐵 → 𝐵 ≤ 𝑦 ) ) |
25 |
24
|
a1d |
⊢ ( 𝑧 ≤ 𝑦 → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝐵 ≤ 𝑦 ) ) ) |
26 |
6 25
|
reximdai |
⊢ ( 𝑧 ≤ 𝑦 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) |
27 |
26
|
com12 |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → ( 𝑧 ≤ 𝑦 → ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) |
28 |
23 27
|
syl |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑧 ≤ 𝑦 → ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) |
29 |
19 28
|
rexlimi |
⊢ ( ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 → ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
30 |
29
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 → ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) |
31 |
18 30
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
32 |
2 31
|
ralbid |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
33 |
1 9 3
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ* ) |
34 |
|
infxrunb3 |
⊢ ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ* → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ inf ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) = -∞ ) ) |
35 |
33 34
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ inf ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) = -∞ ) ) |
36 |
32 35
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) = -∞ ) ) |