Metamath Proof Explorer


Theorem infxrunb3rnmpt

Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infxrunb3rnmpt.1 𝑥 𝜑
infxrunb3rnmpt.2 𝑦 𝜑
infxrunb3rnmpt.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
Assertion infxrunb3rnmpt ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑥𝐴 𝐵𝑦 ↔ inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) = -∞ ) )

Proof

Step Hyp Ref Expression
1 infxrunb3rnmpt.1 𝑥 𝜑
2 infxrunb3rnmpt.2 𝑦 𝜑
3 infxrunb3rnmpt.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
4 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
5 4 nfrn 𝑥 ran ( 𝑥𝐴𝐵 )
6 nfv 𝑥 𝑧𝑦
7 5 6 nfrex 𝑥𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦
8 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
9 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
10 9 elrnmpt1 ( ( 𝑥𝐴𝐵 ∈ ℝ* ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
11 8 3 10 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
12 11 3adant3 ( ( 𝜑𝑥𝐴𝐵𝑦 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
13 simp3 ( ( 𝜑𝑥𝐴𝐵𝑦 ) → 𝐵𝑦 )
14 breq1 ( 𝑧 = 𝐵 → ( 𝑧𝑦𝐵𝑦 ) )
15 14 rspcev ( ( 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) ∧ 𝐵𝑦 ) → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
16 12 13 15 syl2anc ( ( 𝜑𝑥𝐴𝐵𝑦 ) → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
17 16 3exp ( 𝜑 → ( 𝑥𝐴 → ( 𝐵𝑦 → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) ) )
18 1 7 17 rexlimd ( 𝜑 → ( ∃ 𝑥𝐴 𝐵𝑦 → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
19 nfv 𝑧𝑥𝐴 𝐵𝑦
20 vex 𝑧 ∈ V
21 9 elrnmpt ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 ) )
22 20 21 ax-mp ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 )
23 22 biimpi ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) → ∃ 𝑥𝐴 𝑧 = 𝐵 )
24 14 biimpcd ( 𝑧𝑦 → ( 𝑧 = 𝐵𝐵𝑦 ) )
25 24 a1d ( 𝑧𝑦 → ( 𝑥𝐴 → ( 𝑧 = 𝐵𝐵𝑦 ) ) )
26 6 25 reximdai ( 𝑧𝑦 → ( ∃ 𝑥𝐴 𝑧 = 𝐵 → ∃ 𝑥𝐴 𝐵𝑦 ) )
27 26 com12 ( ∃ 𝑥𝐴 𝑧 = 𝐵 → ( 𝑧𝑦 → ∃ 𝑥𝐴 𝐵𝑦 ) )
28 23 27 syl ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) → ( 𝑧𝑦 → ∃ 𝑥𝐴 𝐵𝑦 ) )
29 19 28 rexlimi ( ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 → ∃ 𝑥𝐴 𝐵𝑦 )
30 29 a1i ( 𝜑 → ( ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 → ∃ 𝑥𝐴 𝐵𝑦 ) )
31 18 30 impbid ( 𝜑 → ( ∃ 𝑥𝐴 𝐵𝑦 ↔ ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
32 2 31 ralbid ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑥𝐴 𝐵𝑦 ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
33 1 9 3 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ* )
34 infxrunb3 ( ran ( 𝑥𝐴𝐵 ) ⊆ ℝ* → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ↔ inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) = -∞ ) )
35 33 34 syl ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ↔ inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) = -∞ ) )
36 32 35 bitrd ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑥𝐴 𝐵𝑦 ↔ inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) = -∞ ) )