Metamath Proof Explorer


Theorem climbddf

Description: A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climbddf.1 _kF
climbddf.2 Z=M
Assertion climbddf MFdomkZFkxkZFkx

Proof

Step Hyp Ref Expression
1 climbddf.1 _kF
2 climbddf.2 Z=M
3 simp1 MFdomkZFkM
4 simp2 MFdomkZFkFdom
5 nfv jFk
6 nfcv _kj
7 1 6 nffv _kFj
8 nfcv _k
9 7 8 nfel kFj
10 fveq2 k=jFk=Fj
11 10 eleq1d k=jFkFj
12 5 9 11 cbvralw kZFkjZFj
13 12 biimpi kZFkjZFj
14 13 3ad2ant3 MFdomkZFkjZFj
15 2 climbdd MFdomjZFjxjZFjx
16 3 4 14 15 syl3anc MFdomkZFkxjZFjx
17 nfcv _kabs
18 17 7 nffv _kFj
19 nfcv _k
20 nfcv _kx
21 18 19 20 nfbr kFjx
22 nfv jFkx
23 2fveq3 j=kFj=Fk
24 23 breq1d j=kFjxFkx
25 21 22 24 cbvralw jZFjxkZFkx
26 25 rexbii xjZFjxxkZFkx
27 16 26 sylib MFdomkZFkxkZFkx