Description: A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climbddf.1 | |
|
climbddf.2 | |
||
Assertion | climbddf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climbddf.1 | |
|
2 | climbddf.2 | |
|
3 | simp1 | |
|
4 | simp2 | |
|
5 | nfv | |
|
6 | nfcv | |
|
7 | 1 6 | nffv | |
8 | nfcv | |
|
9 | 7 8 | nfel | |
10 | fveq2 | |
|
11 | 10 | eleq1d | |
12 | 5 9 11 | cbvralw | |
13 | 12 | biimpi | |
14 | 13 | 3ad2ant3 | |
15 | 2 | climbdd | |
16 | 3 4 14 15 | syl3anc | |
17 | nfcv | |
|
18 | 17 7 | nffv | |
19 | nfcv | |
|
20 | nfcv | |
|
21 | 18 19 20 | nfbr | |
22 | nfv | |
|
23 | 2fveq3 | |
|
24 | 23 | breq1d | |
25 | 21 22 24 | cbvralw | |
26 | 25 | rexbii | |
27 | 16 26 | sylib | |