Metamath Proof Explorer


Theorem climeqf

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeqf.p kφ
climeqf.k _kF
climeqf.n _kG
climeqf.m φM
climeqf.z Z=M
climeqf.f φFV
climeqf.g φGW
climeqf.e φkZFk=Gk
Assertion climeqf φFAGA

Proof

Step Hyp Ref Expression
1 climeqf.p kφ
2 climeqf.k _kF
3 climeqf.n _kG
4 climeqf.m φM
5 climeqf.z Z=M
6 climeqf.f φFV
7 climeqf.g φGW
8 climeqf.e φkZFk=Gk
9 nfv kjZ
10 1 9 nfan kφjZ
11 nfcv _kj
12 2 11 nffv _kFj
13 3 11 nffv _kGj
14 12 13 nfeq kFj=Gj
15 10 14 nfim kφjZFj=Gj
16 eleq1w k=jkZjZ
17 16 anbi2d k=jφkZφjZ
18 fveq2 k=jFk=Fj
19 fveq2 k=jGk=Gj
20 18 19 eqeq12d k=jFk=GkFj=Gj
21 17 20 imbi12d k=jφkZFk=GkφjZFj=Gj
22 15 21 8 chvarfv φjZFj=Gj
23 5 6 7 4 22 climeq φFAGA