Metamath Proof Explorer


Theorem climeldmeqmpt3

Description: Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeldmeqmpt3.k kφ
climeldmeqmpt3.m φM
climeldmeqmpt3.z Z=M
climeldmeqmpt3.a φAV
climeldmeqmpt3.c φCW
climeldmeqmpt3.i φZA
climeldmeqmpt3.s φZC
climeldmeqmpt3.b φkZBU
climeldmeqmpt3.e φkZB=D
Assertion climeldmeqmpt3 φkABdomkCDdom

Proof

Step Hyp Ref Expression
1 climeldmeqmpt3.k kφ
2 climeldmeqmpt3.m φM
3 climeldmeqmpt3.z Z=M
4 climeldmeqmpt3.a φAV
5 climeldmeqmpt3.c φCW
6 climeldmeqmpt3.i φZA
7 climeldmeqmpt3.s φZC
8 climeldmeqmpt3.b φkZBU
9 climeldmeqmpt3.e φkZB=D
10 4 mptexd φkABV
11 5 mptexd φkCDV
12 nfv kjZ
13 1 12 nfan kφjZ
14 nfcsb1v _kj/kB
15 nfcv _kj
16 15 nfcsb1 _kj/kD
17 14 16 nfeq kj/kB=j/kD
18 13 17 nfim kφjZj/kB=j/kD
19 eleq1w k=jkZjZ
20 19 anbi2d k=jφkZφjZ
21 csbeq1a k=jB=j/kB
22 csbeq1a k=jD=j/kD
23 21 22 eqeq12d k=jB=Dj/kB=j/kD
24 20 23 imbi12d k=jφkZB=DφjZj/kB=j/kD
25 18 24 9 chvarfv φjZj/kB=j/kD
26 6 sselda φjZjA
27 nfcv _kU
28 14 27 nfel kj/kBU
29 13 28 nfim kφjZj/kBU
30 21 eleq1d k=jBUj/kBU
31 20 30 imbi12d k=jφkZBUφjZj/kBU
32 29 31 8 chvarfv φjZj/kBU
33 15 nfcsb1 _kj/kB
34 eqid kAB=kAB
35 15 33 21 34 fvmptf jAj/kBUkABj=j/kB
36 26 32 35 syl2anc φjZkABj=j/kB
37 7 sselda φjZjC
38 25 32 eqeltrrd φjZj/kDU
39 eqid kCD=kCD
40 15 16 22 39 fvmptf jCj/kDUkCDj=j/kD
41 37 38 40 syl2anc φjZkCDj=j/kD
42 25 36 41 3eqtr4d φjZkABj=kCDj
43 3 10 11 2 42 climeldmeq φkABdomkCDdom