Metamath Proof Explorer


Theorem climeldmeqmpt3

Description: Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeldmeqmpt3.k 𝑘 𝜑
climeldmeqmpt3.m ( 𝜑𝑀 ∈ ℤ )
climeldmeqmpt3.z 𝑍 = ( ℤ𝑀 )
climeldmeqmpt3.a ( 𝜑𝐴𝑉 )
climeldmeqmpt3.c ( 𝜑𝐶𝑊 )
climeldmeqmpt3.i ( 𝜑𝑍𝐴 )
climeldmeqmpt3.s ( 𝜑𝑍𝐶 )
climeldmeqmpt3.b ( ( 𝜑𝑘𝑍 ) → 𝐵𝑈 )
climeldmeqmpt3.e ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 )
Assertion climeldmeqmpt3 ( 𝜑 → ( ( 𝑘𝐴𝐵 ) ∈ dom ⇝ ↔ ( 𝑘𝐶𝐷 ) ∈ dom ⇝ ) )

Proof

Step Hyp Ref Expression
1 climeldmeqmpt3.k 𝑘 𝜑
2 climeldmeqmpt3.m ( 𝜑𝑀 ∈ ℤ )
3 climeldmeqmpt3.z 𝑍 = ( ℤ𝑀 )
4 climeldmeqmpt3.a ( 𝜑𝐴𝑉 )
5 climeldmeqmpt3.c ( 𝜑𝐶𝑊 )
6 climeldmeqmpt3.i ( 𝜑𝑍𝐴 )
7 climeldmeqmpt3.s ( 𝜑𝑍𝐶 )
8 climeldmeqmpt3.b ( ( 𝜑𝑘𝑍 ) → 𝐵𝑈 )
9 climeldmeqmpt3.e ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 )
10 4 mptexd ( 𝜑 → ( 𝑘𝐴𝐵 ) ∈ V )
11 5 mptexd ( 𝜑 → ( 𝑘𝐶𝐷 ) ∈ V )
12 nfv 𝑘 𝑗𝑍
13 1 12 nfan 𝑘 ( 𝜑𝑗𝑍 )
14 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
15 nfcv 𝑘 𝑗
16 15 nfcsb1 𝑘 𝑗 / 𝑘 𝐷
17 14 16 nfeq 𝑘 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷
18 13 17 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 )
19 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
20 19 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
21 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
22 csbeq1a ( 𝑘 = 𝑗𝐷 = 𝑗 / 𝑘 𝐷 )
23 21 22 eqeq12d ( 𝑘 = 𝑗 → ( 𝐵 = 𝐷 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 ) )
24 20 23 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 ) ↔ ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 ) ) )
25 18 24 9 chvarfv ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 )
26 6 sselda ( ( 𝜑𝑗𝑍 ) → 𝑗𝐴 )
27 nfcv 𝑘 𝑈
28 14 27 nfel 𝑘 𝑗 / 𝑘 𝐵𝑈
29 13 28 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵𝑈 )
30 21 eleq1d ( 𝑘 = 𝑗 → ( 𝐵𝑈 𝑗 / 𝑘 𝐵𝑈 ) )
31 20 30 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → 𝐵𝑈 ) ↔ ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵𝑈 ) ) )
32 29 31 8 chvarfv ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵𝑈 )
33 15 nfcsb1 𝑘 𝑗 / 𝑘 𝐵
34 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
35 15 33 21 34 fvmptf ( ( 𝑗𝐴 𝑗 / 𝑘 𝐵𝑈 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
36 26 32 35 syl2anc ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
37 7 sselda ( ( 𝜑𝑗𝑍 ) → 𝑗𝐶 )
38 25 32 eqeltrrd ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐷𝑈 )
39 eqid ( 𝑘𝐶𝐷 ) = ( 𝑘𝐶𝐷 )
40 15 16 22 39 fvmptf ( ( 𝑗𝐶 𝑗 / 𝑘 𝐷𝑈 ) → ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐷 )
41 37 38 40 syl2anc ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐷 )
42 25 36 41 3eqtr4d ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) )
43 3 10 11 2 42 climeldmeq ( 𝜑 → ( ( 𝑘𝐴𝐵 ) ∈ dom ⇝ ↔ ( 𝑘𝐶𝐷 ) ∈ dom ⇝ ) )