| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climeldmeqmpt3.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
climeldmeqmpt3.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
climeldmeqmpt3.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
climeldmeqmpt3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
climeldmeqmpt3.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
| 6 |
|
climeldmeqmpt3.i |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
| 7 |
|
climeldmeqmpt3.s |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐶 ) |
| 8 |
|
climeldmeqmpt3.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ 𝑈 ) |
| 9 |
|
climeldmeqmpt3.e |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 = 𝐷 ) |
| 10 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 11 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ∈ V ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
| 13 |
1 12
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
| 14 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
| 16 |
15
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐷 |
| 17 |
14 16
|
nfeq |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 |
| 18 |
13 17
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
| 19 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
| 20 |
19
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
| 21 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 22 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐷 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 = 𝐷 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) ) |
| 24 |
20 23
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 = 𝐷 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) ) ) |
| 25 |
18 24 9
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
| 26 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝐴 ) |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑈 |
| 28 |
14 27
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 |
| 29 |
13 28
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) |
| 30 |
21
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ 𝑈 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) ) |
| 31 |
20 30
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ 𝑈 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) ) ) |
| 32 |
29 31 8
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) |
| 33 |
15
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 34 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
| 35 |
15 33 21 34
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 36 |
26 32 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 37 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝐶 ) |
| 38 |
25 32
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑈 ) |
| 39 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) = ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) |
| 40 |
15 16 22 39
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝐶 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑈 ) → ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
| 41 |
37 38 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
| 42 |
25 36 41
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) ) |
| 43 |
3 10 11 2 42
|
climeldmeq |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ dom ⇝ ↔ ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ∈ dom ⇝ ) ) |