Metamath Proof Explorer


Theorem climbdd

Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypothesis climcau.1 Z=M
Assertion climbdd MFdomkZFkxkZFkx

Proof

Step Hyp Ref Expression
1 climcau.1 Z=M
2 simp3 MFdomkZFkkZFk
3 1 climcau MFdomy+jZkjFkFj<y
4 3 3adant3 MFdomkZFky+jZkjFkFj<y
5 1 caubnd kZFky+jZkjFkFj<yxkZFk<x
6 2 4 5 syl2anc MFdomkZFkxkZFk<x
7 r19.26 kZFkFk<xkZFkkZFk<x
8 simpr MFdomxkZFkFk
9 8 abscld MFdomxkZFkFk
10 simpllr MFdomxkZFkx
11 ltle FkxFk<xFkx
12 9 10 11 syl2anc MFdomxkZFkFk<xFkx
13 12 expimpd MFdomxkZFkFk<xFkx
14 13 ralimdva MFdomxkZFkFk<xkZFkx
15 7 14 biimtrrid MFdomxkZFkkZFk<xkZFkx
16 15 exp4b MFdomxkZFkkZFk<xkZFkx
17 16 com23 MFdomkZFkxkZFk<xkZFkx
18 17 3impia MFdomkZFkxkZFk<xkZFkx
19 18 reximdvai MFdomkZFkxkZFk<xxkZFkx
20 6 19 mpd MFdomkZFkxkZFkx