Metamath Proof Explorer


Theorem caucvgrlem

Description: Lemma for caurcvgr . (Contributed by Mario Carneiro, 15-Feb-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses caurcvgr.1 φ A
caurcvgr.2 φ F : A
caurcvgr.3 φ sup A * < = +∞
caurcvgr.4 φ x + j A k A j k F k F j < x
caucvgrlem.4 φ R +
Assertion caucvgrlem φ j A lim sup F k A j k F k lim sup F < 3 R

Proof

Step Hyp Ref Expression
1 caurcvgr.1 φ A
2 caurcvgr.2 φ F : A
3 caurcvgr.3 φ sup A * < = +∞
4 caurcvgr.4 φ x + j A k A j k F k F j < x
5 caucvgrlem.4 φ R +
6 reex V
7 6 ssex A A V
8 1 7 syl φ A V
9 6 a1i φ V
10 fex2 F : A A V V F V
11 2 8 9 10 syl3anc φ F V
12 limsupcl F V lim sup F *
13 11 12 syl φ lim sup F *
14 13 adantr φ j A k A j k F k F j < R lim sup F *
15 2 adantr φ j A k A j k F k F j < R F : A
16 simprl φ j A k A j k F k F j < R j A
17 15 16 ffvelrnd φ j A k A j k F k F j < R F j
18 5 rpred φ R
19 18 adantr φ j A k A j k F k F j < R R
20 17 19 readdcld φ j A k A j k F k F j < R F j + R
21 mnfxr −∞ *
22 21 a1i φ j A k A j k F k F j < R −∞ *
23 17 19 resubcld φ j A k A j k F k F j < R F j R
24 23 rexrd φ j A k A j k F k F j < R F j R *
25 23 mnfltd φ j A k A j k F k F j < R −∞ < F j R
26 1 adantr φ j A k A j k F k F j < R A
27 ressxr *
28 fss F : A * F : A *
29 2 27 28 sylancl φ F : A *
30 29 adantr φ j A k A j k F k F j < R F : A *
31 3 adantr φ j A k A j k F k F j < R sup A * < = +∞
32 26 16 sseldd φ j A k A j k F k F j < R j
33 simprr φ j A k A j k F k F j < R k A j k F k F j < R
34 breq2 k = m j k j m
35 34 imbrov2fvoveq k = m j k F k F j < R j m F m F j < R
36 35 cbvralvw k A j k F k F j < R m A j m F m F j < R
37 33 36 sylib φ j A k A j k F k F j < R m A j m F m F j < R
38 15 ffvelrnda φ j A k A j k F k F j < R m A F m
39 17 adantr φ j A k A j k F k F j < R m A F j
40 38 39 resubcld φ j A k A j k F k F j < R m A F m F j
41 40 recnd φ j A k A j k F k F j < R m A F m F j
42 41 abscld φ j A k A j k F k F j < R m A F m F j
43 19 adantr φ j A k A j k F k F j < R m A R
44 ltle F m F j R F m F j < R F m F j R
45 42 43 44 syl2anc φ j A k A j k F k F j < R m A F m F j < R F m F j R
46 38 39 43 absdifled φ j A k A j k F k F j < R m A F m F j R F j R F m F m F j + R
47 45 46 sylibd φ j A k A j k F k F j < R m A F m F j < R F j R F m F m F j + R
48 simpl F j R F m F m F j + R F j R F m
49 47 48 syl6 φ j A k A j k F k F j < R m A F m F j < R F j R F m
50 49 imim2d φ j A k A j k F k F j < R m A j m F m F j < R j m F j R F m
51 50 ralimdva φ j A k A j k F k F j < R m A j m F m F j < R m A j m F j R F m
52 37 51 mpd φ j A k A j k F k F j < R m A j m F j R F m
53 breq1 n = j n m j m
54 53 rspceaimv j m A j m F j R F m n m A n m F j R F m
55 32 52 54 syl2anc φ j A k A j k F k F j < R n m A n m F j R F m
56 26 30 24 31 55 limsupbnd2 φ j A k A j k F k F j < R F j R lim sup F
57 22 24 14 25 56 xrltletrd φ j A k A j k F k F j < R −∞ < lim sup F
58 20 rexrd φ j A k A j k F k F j < R F j + R *
59 42 adantrr φ j A k A j k F k F j < R m A j m F m F j
60 19 adantr φ j A k A j k F k F j < R m A j m R
61 simprr φ j A k A j k F k F j < R m A j m j m
62 simplrr φ j A k A j k F k F j < R m A j m k A j k F k F j < R
63 simprl φ j A k A j k F k F j < R m A j m m A
64 35 62 63 rspcdva φ j A k A j k F k F j < R m A j m j m F m F j < R
65 61 64 mpd φ j A k A j k F k F j < R m A j m F m F j < R
66 59 60 65 ltled φ j A k A j k F k F j < R m A j m F m F j R
67 38 adantrr φ j A k A j k F k F j < R m A j m F m
68 17 adantr φ j A k A j k F k F j < R m A j m F j
69 67 68 60 absdifled φ j A k A j k F k F j < R m A j m F m F j R F j R F m F m F j + R
70 66 69 mpbid φ j A k A j k F k F j < R m A j m F j R F m F m F j + R
71 70 simprd φ j A k A j k F k F j < R m A j m F m F j + R
72 71 expr φ j A k A j k F k F j < R m A j m F m F j + R
73 72 ralrimiva φ j A k A j k F k F j < R m A j m F m F j + R
74 53 rspceaimv j m A j m F m F j + R n m A n m F m F j + R
75 32 73 74 syl2anc φ j A k A j k F k F j < R n m A n m F m F j + R
76 26 30 58 75 limsupbnd1 φ j A k A j k F k F j < R lim sup F F j + R
77 xrre lim sup F * F j + R −∞ < lim sup F lim sup F F j + R lim sup F
78 14 20 57 76 77 syl22anc φ j A k A j k F k F j < R lim sup F
79 78 adantr φ j A k A j k F k F j < R m A j m lim sup F
80 67 79 resubcld φ j A k A j k F k F j < R m A j m F m lim sup F
81 80 recnd φ j A k A j k F k F j < R m A j m F m lim sup F
82 81 abscld φ j A k A j k F k F j < R m A j m F m lim sup F
83 2re 2
84 remulcl 2 R 2 R
85 83 60 84 sylancr φ j A k A j k F k F j < R m A j m 2 R
86 3re 3
87 remulcl 3 R 3 R
88 86 60 87 sylancr φ j A k A j k F k F j < R m A j m 3 R
89 67 recnd φ j A k A j k F k F j < R m A j m F m
90 79 recnd φ j A k A j k F k F j < R m A j m lim sup F
91 89 90 abssubd φ j A k A j k F k F j < R m A j m F m lim sup F = lim sup F F m
92 67 85 resubcld φ j A k A j k F k F j < R m A j m F m 2 R
93 23 adantr φ j A k A j k F k F j < R m A j m F j R
94 60 recnd φ j A k A j k F k F j < R m A j m R
95 94 2timesd φ j A k A j k F k F j < R m A j m 2 R = R + R
96 95 oveq2d φ j A k A j k F k F j < R m A j m F m 2 R = F m R + R
97 89 94 94 subsub4d φ j A k A j k F k F j < R m A j m F m - R - R = F m R + R
98 96 97 eqtr4d φ j A k A j k F k F j < R m A j m F m 2 R = F m - R - R
99 67 60 resubcld φ j A k A j k F k F j < R m A j m F m R
100 67 60 68 lesubaddd φ j A k A j k F k F j < R m A j m F m R F j F m F j + R
101 71 100 mpbird φ j A k A j k F k F j < R m A j m F m R F j
102 99 68 60 101 lesub1dd φ j A k A j k F k F j < R m A j m F m - R - R F j R
103 98 102 eqbrtrd φ j A k A j k F k F j < R m A j m F m 2 R F j R
104 56 adantr φ j A k A j k F k F j < R m A j m F j R lim sup F
105 92 93 79 103 104 letrd φ j A k A j k F k F j < R m A j m F m 2 R lim sup F
106 20 adantr φ j A k A j k F k F j < R m A j m F j + R
107 67 85 readdcld φ j A k A j k F k F j < R m A j m F m + 2 R
108 76 adantr φ j A k A j k F k F j < R m A j m lim sup F F j + R
109 67 60 readdcld φ j A k A j k F k F j < R m A j m F m + R
110 70 48 syl φ j A k A j k F k F j < R m A j m F j R F m
111 68 60 67 lesubaddd φ j A k A j k F k F j < R m A j m F j R F m F j F m + R
112 110 111 mpbid φ j A k A j k F k F j < R m A j m F j F m + R
113 68 109 60 112 leadd1dd φ j A k A j k F k F j < R m A j m F j + R F m + R + R
114 89 94 94 addassd φ j A k A j k F k F j < R m A j m F m + R + R = F m + R + R
115 95 oveq2d φ j A k A j k F k F j < R m A j m F m + 2 R = F m + R + R
116 114 115 eqtr4d φ j A k A j k F k F j < R m A j m F m + R + R = F m + 2 R
117 113 116 breqtrd φ j A k A j k F k F j < R m A j m F j + R F m + 2 R
118 79 106 107 108 117 letrd φ j A k A j k F k F j < R m A j m lim sup F F m + 2 R
119 79 67 85 absdifled φ j A k A j k F k F j < R m A j m lim sup F F m 2 R F m 2 R lim sup F lim sup F F m + 2 R
120 105 118 119 mpbir2and φ j A k A j k F k F j < R m A j m lim sup F F m 2 R
121 91 120 eqbrtrd φ j A k A j k F k F j < R m A j m F m lim sup F 2 R
122 2lt3 2 < 3
123 83 a1i φ j A k A j k F k F j < R m A j m 2
124 86 a1i φ j A k A j k F k F j < R m A j m 3
125 5 adantr φ j A k A j k F k F j < R R +
126 125 adantr φ j A k A j k F k F j < R m A j m R +
127 123 124 126 ltmul1d φ j A k A j k F k F j < R m A j m 2 < 3 2 R < 3 R
128 122 127 mpbii φ j A k A j k F k F j < R m A j m 2 R < 3 R
129 82 85 88 121 128 lelttrd φ j A k A j k F k F j < R m A j m F m lim sup F < 3 R
130 129 expr φ j A k A j k F k F j < R m A j m F m lim sup F < 3 R
131 130 ralrimiva φ j A k A j k F k F j < R m A j m F m lim sup F < 3 R
132 34 imbrov2fvoveq k = m j k F k lim sup F < 3 R j m F m lim sup F < 3 R
133 132 cbvralvw k A j k F k lim sup F < 3 R m A j m F m lim sup F < 3 R
134 131 133 sylibr φ j A k A j k F k F j < R k A j k F k lim sup F < 3 R
135 78 134 jca φ j A k A j k F k F j < R lim sup F k A j k F k lim sup F < 3 R
136 breq2 x = R F k F j < x F k F j < R
137 136 imbi2d x = R j k F k F j < x j k F k F j < R
138 137 rexralbidv x = R j A k A j k F k F j < x j A k A j k F k F j < R
139 138 4 5 rspcdva φ j A k A j k F k F j < R
140 135 139 reximddv φ j A lim sup F k A j k F k lim sup F < 3 R