Metamath Proof Explorer


Theorem climcau

Description: A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of Gleason p. 180 (necessity part). (Contributed by NM, 16-Apr-2005) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypothesis climcau.1 Z=M
Assertion climcau MFdomx+jZkjFkFj<x

Proof

Step Hyp Ref Expression
1 climcau.1 Z=M
2 df-br FyFy
3 simpll MFyx+M
4 rphalfcl x+x2+
5 4 adantl MFyx+x2+
6 eqidd MFyx+kZFk=Fk
7 simplr MFyx+Fy
8 1 3 5 6 7 climi MFyx+jZkjFkFky<x2
9 eluzelz jMj
10 uzid jjj
11 9 10 syl jMjj
12 11 1 eleq2s jZjj
13 12 adantl MFyx+jZjj
14 fveq2 k=jFk=Fj
15 14 eleq1d k=jFkFj
16 14 fvoveq1d k=jFky=Fjy
17 16 breq1d k=jFky<x2Fjy<x2
18 15 17 anbi12d k=jFkFky<x2FjFjy<x2
19 18 rspcv jjkjFkFky<x2FjFjy<x2
20 13 19 syl MFyx+jZkjFkFky<x2FjFjy<x2
21 rpre x+x
22 21 ad2antlr MFyx+jZx
23 simpllr MFyx+jZFy
24 climcl Fyy
25 23 24 syl MFyx+jZy
26 simprl xyFjFjy<x2FkFky<x2Fk
27 simplrl xyFjFjy<x2FkFky<x2Fj
28 simpllr xyFjFjy<x2FkFky<x2y
29 simplll xyFjFjy<x2FkFky<x2x
30 simprr xyFjFjy<x2FkFky<x2Fky<x2
31 28 27 abssubd xyFjFjy<x2FkFky<x2yFj=Fjy
32 simplrr xyFjFjy<x2FkFky<x2Fjy<x2
33 31 32 eqbrtrd xyFjFjy<x2FkFky<x2yFj<x2
34 26 27 28 29 30 33 abs3lemd xyFjFjy<x2FkFky<x2FkFj<x
35 34 ex xyFjFjy<x2FkFky<x2FkFj<x
36 35 ralimdv xyFjFjy<x2kjFkFky<x2kjFkFj<x
37 36 ex xyFjFjy<x2kjFkFky<x2kjFkFj<x
38 37 com23 xykjFkFky<x2FjFjy<x2kjFkFj<x
39 22 25 38 syl2anc MFyx+jZkjFkFky<x2FjFjy<x2kjFkFj<x
40 20 39 mpdd MFyx+jZkjFkFky<x2kjFkFj<x
41 40 reximdva MFyx+jZkjFkFky<x2jZkjFkFj<x
42 8 41 mpd MFyx+jZkjFkFj<x
43 42 ralrimiva MFyx+jZkjFkFj<x
44 43 ex MFyx+jZkjFkFj<x
45 2 44 biimtrrid MFyx+jZkjFkFj<x
46 45 exlimdv MyFyx+jZkjFkFj<x
47 eldm2g FdomFdomyFy
48 47 ibi FdomyFy
49 46 48 impel MFdomx+jZkjFkFj<x