Description: A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of Gleason p. 180 (necessity part). (Contributed by NM, 16-Apr-2005) (Revised by Mario Carneiro, 26-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | climcau.1 | |
|
Assertion | climcau | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climcau.1 | |
|
2 | df-br | |
|
3 | simpll | |
|
4 | rphalfcl | |
|
5 | 4 | adantl | |
6 | eqidd | |
|
7 | simplr | |
|
8 | 1 3 5 6 7 | climi | |
9 | eluzelz | |
|
10 | uzid | |
|
11 | 9 10 | syl | |
12 | 11 1 | eleq2s | |
13 | 12 | adantl | |
14 | fveq2 | |
|
15 | 14 | eleq1d | |
16 | 14 | fvoveq1d | |
17 | 16 | breq1d | |
18 | 15 17 | anbi12d | |
19 | 18 | rspcv | |
20 | 13 19 | syl | |
21 | rpre | |
|
22 | 21 | ad2antlr | |
23 | simpllr | |
|
24 | climcl | |
|
25 | 23 24 | syl | |
26 | simprl | |
|
27 | simplrl | |
|
28 | simpllr | |
|
29 | simplll | |
|
30 | simprr | |
|
31 | 28 27 | abssubd | |
32 | simplrr | |
|
33 | 31 32 | eqbrtrd | |
34 | 26 27 28 29 30 33 | abs3lemd | |
35 | 34 | ex | |
36 | 35 | ralimdv | |
37 | 36 | ex | |
38 | 37 | com23 | |
39 | 22 25 38 | syl2anc | |
40 | 20 39 | mpdd | |
41 | 40 | reximdva | |
42 | 8 41 | mpd | |
43 | 42 | ralrimiva | |
44 | 43 | ex | |
45 | 2 44 | biimtrrid | |
46 | 45 | exlimdv | |
47 | eldm2g | |
|
48 | 47 | ibi | |
49 | 46 48 | impel | |