| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupubuz.j |
|
| 2 |
|
limsupubuz.z |
|
| 3 |
|
limsupubuz.f |
|
| 4 |
|
limsupubuz.n |
|
| 5 |
|
nfv |
|
| 6 |
|
nfcv |
|
| 7 |
|
uzssre |
|
| 8 |
2 7
|
eqsstri |
|
| 9 |
8
|
a1i |
|
| 10 |
3
|
frexr |
|
| 11 |
5 6 9 10 4
|
limsupub |
|
| 12 |
11
|
adantr |
|
| 13 |
|
nfv |
|
| 14 |
5 13
|
nfan |
|
| 15 |
|
nfv |
|
| 16 |
14 15
|
nfan |
|
| 17 |
|
nfv |
|
| 18 |
16 17
|
nfan |
|
| 19 |
|
nfra1 |
|
| 20 |
18 19
|
nfan |
|
| 21 |
|
nfmpt1 |
|
| 22 |
21
|
nfrn |
|
| 23 |
|
nfcv |
|
| 24 |
|
nfcv |
|
| 25 |
22 23 24
|
nfsup |
|
| 26 |
|
nfcv |
|
| 27 |
|
nfcv |
|
| 28 |
25 26 27
|
nfbr |
|
| 29 |
28 27 25
|
nfif |
|
| 30 |
|
breq2 |
|
| 31 |
|
fveq2 |
|
| 32 |
31
|
breq1d |
|
| 33 |
30 32
|
imbi12d |
|
| 34 |
33
|
cbvralvw |
|
| 35 |
34
|
biimpi |
|
| 36 |
35
|
adantl |
|
| 37 |
|
simp-4r |
|
| 38 |
36 37
|
syldan |
|
| 39 |
3
|
ad4antr |
|
| 40 |
36 39
|
syldan |
|
| 41 |
|
simpllr |
|
| 42 |
36 41
|
syldan |
|
| 43 |
|
simplr |
|
| 44 |
36 43
|
syldan |
|
| 45 |
34
|
biimpri |
|
| 46 |
36 45
|
syl |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
20 29 38 2 40 42 44 46 47 48 49
|
limsupubuzlem |
|
| 51 |
50
|
rexlimdva2 |
|
| 52 |
51
|
rexlimdva |
|
| 53 |
12 52
|
mpd |
|
| 54 |
2
|
a1i |
|
| 55 |
|
uz0 |
|
| 56 |
54 55
|
eqtrd |
|
| 57 |
|
0red |
|
| 58 |
|
rzal |
|
| 59 |
|
brralrspcev |
|
| 60 |
57 58 59
|
syl2anc |
|
| 61 |
56 60
|
syl |
|
| 62 |
61
|
adantl |
|
| 63 |
53 62
|
pm2.61dan |
|
| 64 |
|
nfcv |
|
| 65 |
1 64
|
nffv |
|
| 66 |
|
nfcv |
|
| 67 |
|
nfcv |
|
| 68 |
65 66 67
|
nfbr |
|
| 69 |
|
nfv |
|
| 70 |
|
fveq2 |
|
| 71 |
70
|
breq1d |
|
| 72 |
68 69 71
|
cbvralw |
|
| 73 |
72
|
rexbii |
|
| 74 |
63 73
|
sylib |
|