Metamath Proof Explorer


Theorem limsupubuz

Description: For a real-valued function on a set of upper integers, if the superior limit is not +oo , then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupubuz.j _jF
limsupubuz.z Z=M
limsupubuz.f φF:Z
limsupubuz.n φlim supF+∞
Assertion limsupubuz φxjZFjx

Proof

Step Hyp Ref Expression
1 limsupubuz.j _jF
2 limsupubuz.z Z=M
3 limsupubuz.f φF:Z
4 limsupubuz.n φlim supF+∞
5 nfv lφ
6 nfcv _lF
7 uzssre M
8 2 7 eqsstri Z
9 8 a1i φZ
10 3 frexr φF:Z*
11 5 6 9 10 4 limsupub φyklZklFly
12 11 adantr φMyklZklFly
13 nfv lM
14 5 13 nfan lφM
15 nfv ly
16 14 15 nfan lφMy
17 nfv lk
18 16 17 nfan lφMyk
19 nfra1 llZklFly
20 18 19 nfan lφMyklZklFly
21 nfmpt1 _llMifkMMkFl
22 21 nfrn _lranlMifkMMkFl
23 nfcv _l
24 nfcv _l<
25 22 23 24 nfsup _lsupranlMifkMMkFl<
26 nfcv _l
27 nfcv _ly
28 25 26 27 nfbr lsupranlMifkMMkFl<y
29 28 27 25 nfif _lifsupranlMifkMMkFl<yysupranlMifkMMkFl<
30 breq2 l=iklki
31 fveq2 l=iFl=Fi
32 31 breq1d l=iFlyFiy
33 30 32 imbi12d l=iklFlykiFiy
34 33 cbvralvw lZklFlyiZkiFiy
35 34 biimpi lZklFlyiZkiFiy
36 35 adantl φMyklZklFlyiZkiFiy
37 simp-4r φMykiZkiFiyM
38 36 37 syldan φMyklZklFlyM
39 3 ad4antr φMykiZkiFiyF:Z
40 36 39 syldan φMyklZklFlyF:Z
41 simpllr φMykiZkiFiyy
42 36 41 syldan φMyklZklFlyy
43 simplr φMykiZkiFiyk
44 36 43 syldan φMyklZklFlyk
45 34 biimpri iZkiFiylZklFly
46 36 45 syl φMyklZklFlylZklFly
47 eqid ifkMMk=ifkMMk
48 eqid supranlMifkMMkFl<=supranlMifkMMkFl<
49 eqid ifsupranlMifkMMkFl<yysupranlMifkMMkFl<=ifsupranlMifkMMkFl<yysupranlMifkMMkFl<
50 20 29 38 2 40 42 44 46 47 48 49 limsupubuzlem φMyklZklFlyxlZFlx
51 50 rexlimdva2 φMyklZklFlyxlZFlx
52 51 rexlimdva φMyklZklFlyxlZFlx
53 12 52 mpd φMxlZFlx
54 2 a1i ¬MZ=M
55 uz0 ¬MM=
56 54 55 eqtrd ¬MZ=
57 0red Z=0
58 rzal Z=lZFl0
59 brralrspcev 0lZFl0xlZFlx
60 57 58 59 syl2anc Z=xlZFlx
61 56 60 syl ¬MxlZFlx
62 61 adantl φ¬MxlZFlx
63 53 62 pm2.61dan φxlZFlx
64 nfcv _jl
65 1 64 nffv _jFl
66 nfcv _j
67 nfcv _jx
68 65 66 67 nfbr jFlx
69 nfv lFjx
70 fveq2 l=jFl=Fj
71 70 breq1d l=jFlxFjx
72 68 69 71 cbvralw lZFlxjZFjx
73 72 rexbii xlZFlxxjZFjx
74 63 73 sylib φxjZFjx