Description: For a real-valued function on a set of upper integers, if the superior limit is not +oo , then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupubuz.j | |
|
limsupubuz.z | |
||
limsupubuz.f | |
||
limsupubuz.n | |
||
Assertion | limsupubuz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupubuz.j | |
|
2 | limsupubuz.z | |
|
3 | limsupubuz.f | |
|
4 | limsupubuz.n | |
|
5 | nfv | |
|
6 | nfcv | |
|
7 | uzssre | |
|
8 | 2 7 | eqsstri | |
9 | 8 | a1i | |
10 | 3 | frexr | |
11 | 5 6 9 10 4 | limsupub | |
12 | 11 | adantr | |
13 | nfv | |
|
14 | 5 13 | nfan | |
15 | nfv | |
|
16 | 14 15 | nfan | |
17 | nfv | |
|
18 | 16 17 | nfan | |
19 | nfra1 | |
|
20 | 18 19 | nfan | |
21 | nfmpt1 | |
|
22 | 21 | nfrn | |
23 | nfcv | |
|
24 | nfcv | |
|
25 | 22 23 24 | nfsup | |
26 | nfcv | |
|
27 | nfcv | |
|
28 | 25 26 27 | nfbr | |
29 | 28 27 25 | nfif | |
30 | breq2 | |
|
31 | fveq2 | |
|
32 | 31 | breq1d | |
33 | 30 32 | imbi12d | |
34 | 33 | cbvralvw | |
35 | 34 | biimpi | |
36 | 35 | adantl | |
37 | simp-4r | |
|
38 | 36 37 | syldan | |
39 | 3 | ad4antr | |
40 | 36 39 | syldan | |
41 | simpllr | |
|
42 | 36 41 | syldan | |
43 | simplr | |
|
44 | 36 43 | syldan | |
45 | 34 | biimpri | |
46 | 36 45 | syl | |
47 | eqid | |
|
48 | eqid | |
|
49 | eqid | |
|
50 | 20 29 38 2 40 42 44 46 47 48 49 | limsupubuzlem | |
51 | 50 | rexlimdva2 | |
52 | 51 | rexlimdva | |
53 | 12 52 | mpd | |
54 | 2 | a1i | |
55 | uz0 | |
|
56 | 54 55 | eqtrd | |
57 | 0red | |
|
58 | rzal | |
|
59 | brralrspcev | |
|
60 | 57 58 59 | syl2anc | |
61 | 56 60 | syl | |
62 | 61 | adantl | |
63 | 53 62 | pm2.61dan | |
64 | nfcv | |
|
65 | 1 64 | nffv | |
66 | nfcv | |
|
67 | nfcv | |
|
68 | 65 66 67 | nfbr | |
69 | nfv | |
|
70 | fveq2 | |
|
71 | 70 | breq1d | |
72 | 68 69 71 | cbvralw | |
73 | 72 | rexbii | |
74 | 63 73 | sylib | |