Step |
Hyp |
Ref |
Expression |
1 |
|
limsupubuz.j |
|
2 |
|
limsupubuz.z |
|
3 |
|
limsupubuz.f |
|
4 |
|
limsupubuz.n |
|
5 |
|
nfv |
|
6 |
|
nfcv |
|
7 |
|
uzssre |
|
8 |
2 7
|
eqsstri |
|
9 |
8
|
a1i |
|
10 |
3
|
frexr |
|
11 |
5 6 9 10 4
|
limsupub |
|
12 |
11
|
adantr |
|
13 |
|
nfv |
|
14 |
5 13
|
nfan |
|
15 |
|
nfv |
|
16 |
14 15
|
nfan |
|
17 |
|
nfv |
|
18 |
16 17
|
nfan |
|
19 |
|
nfra1 |
|
20 |
18 19
|
nfan |
|
21 |
|
nfmpt1 |
|
22 |
21
|
nfrn |
|
23 |
|
nfcv |
|
24 |
|
nfcv |
|
25 |
22 23 24
|
nfsup |
|
26 |
|
nfcv |
|
27 |
|
nfcv |
|
28 |
25 26 27
|
nfbr |
|
29 |
28 27 25
|
nfif |
|
30 |
|
breq2 |
|
31 |
|
fveq2 |
|
32 |
31
|
breq1d |
|
33 |
30 32
|
imbi12d |
|
34 |
33
|
cbvralvw |
|
35 |
34
|
biimpi |
|
36 |
35
|
adantl |
|
37 |
|
simp-4r |
|
38 |
36 37
|
syldan |
|
39 |
3
|
ad4antr |
|
40 |
36 39
|
syldan |
|
41 |
|
simpllr |
|
42 |
36 41
|
syldan |
|
43 |
|
simplr |
|
44 |
36 43
|
syldan |
|
45 |
34
|
biimpri |
|
46 |
36 45
|
syl |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
20 29 38 2 40 42 44 46 47 48 49
|
limsupubuzlem |
|
51 |
50
|
rexlimdva2 |
|
52 |
51
|
rexlimdva |
|
53 |
12 52
|
mpd |
|
54 |
2
|
a1i |
|
55 |
|
uz0 |
|
56 |
54 55
|
eqtrd |
|
57 |
|
0red |
|
58 |
|
rzal |
|
59 |
|
brralrspcev |
|
60 |
57 58 59
|
syl2anc |
|
61 |
56 60
|
syl |
|
62 |
61
|
adantl |
|
63 |
53 62
|
pm2.61dan |
|
64 |
|
nfcv |
|
65 |
1 64
|
nffv |
|
66 |
|
nfcv |
|
67 |
|
nfcv |
|
68 |
65 66 67
|
nfbr |
|
69 |
|
nfv |
|
70 |
|
fveq2 |
|
71 |
70
|
breq1d |
|
72 |
68 69 71
|
cbvralw |
|
73 |
72
|
rexbii |
|
74 |
63 73
|
sylib |
|