Step |
Hyp |
Ref |
Expression |
1 |
|
limsupequzlem.1 |
|
2 |
|
limsupequzlem.2 |
|
3 |
|
limsupequzlem.4 |
|
4 |
|
limsupequzlem.5 |
|
5 |
|
limsupequzlem.6 |
|
6 |
|
limsupequzlem.7 |
|
7 |
|
limsupequzlem.8 |
|
8 |
|
eqid |
|
9 |
6
|
adantr |
|
10 |
|
eluzelz |
|
11 |
10
|
adantl |
|
12 |
6
|
zred |
|
13 |
12
|
adantr |
|
14 |
13
|
rexrd |
|
15 |
|
zssxr |
|
16 |
|
tpssi |
|
17 |
2 4 6 16
|
syl3anc |
|
18 |
|
xrltso |
|
19 |
18
|
a1i |
|
20 |
|
tpfi |
|
21 |
20
|
a1i |
|
22 |
2
|
tpnzd |
|
23 |
15
|
a1i |
|
24 |
17 23
|
sstrd |
|
25 |
|
fisupcl |
|
26 |
19 21 22 24 25
|
syl13anc |
|
27 |
17 26
|
sseldd |
|
28 |
15 27
|
sselid |
|
29 |
28
|
adantr |
|
30 |
|
eluzelre |
|
31 |
30
|
adantl |
|
32 |
31
|
rexrd |
|
33 |
|
tpid3g |
|
34 |
6 33
|
syl |
|
35 |
|
eqid |
|
36 |
24 34 35
|
supxrubd |
|
37 |
36
|
adantr |
|
38 |
|
eluzle |
|
39 |
38
|
adantl |
|
40 |
14 29 32 37 39
|
xrletrd |
|
41 |
8 9 11 40
|
eluzd |
|
42 |
41 7
|
syldan |
|
43 |
1 42
|
ralrimia |
|
44 |
|
eqid |
|
45 |
|
tpid1g |
|
46 |
2 45
|
syl |
|
47 |
24 46 35
|
supxrubd |
|
48 |
44 2 27 47
|
eluzd |
|
49 |
|
uzss |
|
50 |
48 49
|
syl |
|
51 |
|
eqid |
|
52 |
|
tpid2g |
|
53 |
4 52
|
syl |
|
54 |
24 53 35
|
supxrubd |
|
55 |
51 4 27 54
|
eluzd |
|
56 |
|
uzss |
|
57 |
55 56
|
syl |
|
58 |
|
fvreseq0 |
|
59 |
3 5 50 57 58
|
syl22anc |
|
60 |
43 59
|
mpbird |
|
61 |
60
|
fveq2d |
|
62 |
|
eqid |
|
63 |
|
fvexd |
|
64 |
3 63
|
fnexd |
|
65 |
3
|
fndmd |
|
66 |
|
uzssz |
|
67 |
65 66
|
eqsstrdi |
|
68 |
27 62 64 67
|
limsupresuz2 |
|
69 |
|
fvexd |
|
70 |
5 69
|
fnexd |
|
71 |
5
|
fndmd |
|
72 |
|
uzssz |
|
73 |
71 72
|
eqsstrdi |
|
74 |
27 62 70 73
|
limsupresuz2 |
|
75 |
61 68 74
|
3eqtr3d |
|