Metamath Proof Explorer


Theorem limsupequzlem

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequzlem.1 k φ
limsupequzlem.2 φ M
limsupequzlem.4 φ F Fn M
limsupequzlem.5 φ N
limsupequzlem.6 φ G Fn N
limsupequzlem.7 φ K
limsupequzlem.8 φ k K F k = G k
Assertion limsupequzlem φ lim sup F = lim sup G

Proof

Step Hyp Ref Expression
1 limsupequzlem.1 k φ
2 limsupequzlem.2 φ M
3 limsupequzlem.4 φ F Fn M
4 limsupequzlem.5 φ N
5 limsupequzlem.6 φ G Fn N
6 limsupequzlem.7 φ K
7 limsupequzlem.8 φ k K F k = G k
8 eqid K = K
9 6 adantr φ k sup M N K * < K
10 eluzelz k sup M N K * < k
11 10 adantl φ k sup M N K * < k
12 6 zred φ K
13 12 adantr φ k sup M N K * < K
14 13 rexrd φ k sup M N K * < K *
15 zssxr *
16 tpssi M N K M N K
17 2 4 6 16 syl3anc φ M N K
18 xrltso < Or *
19 18 a1i φ < Or *
20 tpfi M N K Fin
21 20 a1i φ M N K Fin
22 2 tpnzd φ M N K
23 15 a1i φ *
24 17 23 sstrd φ M N K *
25 fisupcl < Or * M N K Fin M N K M N K * sup M N K * < M N K
26 19 21 22 24 25 syl13anc φ sup M N K * < M N K
27 17 26 sseldd φ sup M N K * <
28 15 27 sselid φ sup M N K * < *
29 28 adantr φ k sup M N K * < sup M N K * < *
30 eluzelre k sup M N K * < k
31 30 adantl φ k sup M N K * < k
32 31 rexrd φ k sup M N K * < k *
33 tpid3g K K M N K
34 6 33 syl φ K M N K
35 eqid sup M N K * < = sup M N K * <
36 24 34 35 supxrubd φ K sup M N K * <
37 36 adantr φ k sup M N K * < K sup M N K * <
38 eluzle k sup M N K * < sup M N K * < k
39 38 adantl φ k sup M N K * < sup M N K * < k
40 14 29 32 37 39 xrletrd φ k sup M N K * < K k
41 8 9 11 40 eluzd φ k sup M N K * < k K
42 41 7 syldan φ k sup M N K * < F k = G k
43 1 42 ralrimia φ k sup M N K * < F k = G k
44 eqid M = M
45 tpid1g M M M N K
46 2 45 syl φ M M N K
47 24 46 35 supxrubd φ M sup M N K * <
48 44 2 27 47 eluzd φ sup M N K * < M
49 uzss sup M N K * < M sup M N K * < M
50 48 49 syl φ sup M N K * < M
51 eqid N = N
52 tpid2g N N M N K
53 4 52 syl φ N M N K
54 24 53 35 supxrubd φ N sup M N K * <
55 51 4 27 54 eluzd φ sup M N K * < N
56 uzss sup M N K * < N sup M N K * < N
57 55 56 syl φ sup M N K * < N
58 fvreseq0 F Fn M G Fn N sup M N K * < M sup M N K * < N F sup M N K * < = G sup M N K * < k sup M N K * < F k = G k
59 3 5 50 57 58 syl22anc φ F sup M N K * < = G sup M N K * < k sup M N K * < F k = G k
60 43 59 mpbird φ F sup M N K * < = G sup M N K * <
61 60 fveq2d φ lim sup F sup M N K * < = lim sup G sup M N K * <
62 eqid sup M N K * < = sup M N K * <
63 fvexd φ M V
64 3 63 fnexd φ F V
65 3 fndmd φ dom F = M
66 uzssz M
67 65 66 eqsstrdi φ dom F
68 27 62 64 67 limsupresuz2 φ lim sup F sup M N K * < = lim sup F
69 fvexd φ N V
70 5 69 fnexd φ G V
71 5 fndmd φ dom G = N
72 uzssz N
73 71 72 eqsstrdi φ dom G
74 27 62 70 73 limsupresuz2 φ lim sup G sup M N K * < = lim sup G
75 61 68 74 3eqtr3d φ lim sup F = lim sup G