Metamath Proof Explorer


Theorem fvreseq0

Description: Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019)

Ref Expression
Assertion fvreseq0 FFnAGFnCBABCFB=GBxBFx=Gx

Proof

Step Hyp Ref Expression
1 fnssres FFnABAFBFnB
2 fnssres GFnCBCGBFnB
3 eqfnfv FBFnBGBFnBFB=GBxBFBx=GBx
4 fvres xBFBx=Fx
5 fvres xBGBx=Gx
6 4 5 eqeq12d xBFBx=GBxFx=Gx
7 6 ralbiia xBFBx=GBxxBFx=Gx
8 3 7 bitrdi FBFnBGBFnBFB=GBxBFx=Gx
9 1 2 8 syl2an FFnABAGFnCBCFB=GBxBFx=Gx
10 9 an4s FFnAGFnCBABCFB=GBxBFx=Gx