Step |
Hyp |
Ref |
Expression |
1 |
|
limsupequzlem.1 |
|- F/ k ph |
2 |
|
limsupequzlem.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
limsupequzlem.4 |
|- ( ph -> F Fn ( ZZ>= ` M ) ) |
4 |
|
limsupequzlem.5 |
|- ( ph -> N e. ZZ ) |
5 |
|
limsupequzlem.6 |
|- ( ph -> G Fn ( ZZ>= ` N ) ) |
6 |
|
limsupequzlem.7 |
|- ( ph -> K e. ZZ ) |
7 |
|
limsupequzlem.8 |
|- ( ( ph /\ k e. ( ZZ>= ` K ) ) -> ( F ` k ) = ( G ` k ) ) |
8 |
|
eqid |
|- ( ZZ>= ` K ) = ( ZZ>= ` K ) |
9 |
6
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> K e. ZZ ) |
10 |
|
eluzelz |
|- ( k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) -> k e. ZZ ) |
11 |
10
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> k e. ZZ ) |
12 |
6
|
zred |
|- ( ph -> K e. RR ) |
13 |
12
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> K e. RR ) |
14 |
13
|
rexrd |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> K e. RR* ) |
15 |
|
zssxr |
|- ZZ C_ RR* |
16 |
|
tpssi |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> { M , N , K } C_ ZZ ) |
17 |
2 4 6 16
|
syl3anc |
|- ( ph -> { M , N , K } C_ ZZ ) |
18 |
|
xrltso |
|- < Or RR* |
19 |
18
|
a1i |
|- ( ph -> < Or RR* ) |
20 |
|
tpfi |
|- { M , N , K } e. Fin |
21 |
20
|
a1i |
|- ( ph -> { M , N , K } e. Fin ) |
22 |
2
|
tpnzd |
|- ( ph -> { M , N , K } =/= (/) ) |
23 |
15
|
a1i |
|- ( ph -> ZZ C_ RR* ) |
24 |
17 23
|
sstrd |
|- ( ph -> { M , N , K } C_ RR* ) |
25 |
|
fisupcl |
|- ( ( < Or RR* /\ ( { M , N , K } e. Fin /\ { M , N , K } =/= (/) /\ { M , N , K } C_ RR* ) ) -> sup ( { M , N , K } , RR* , < ) e. { M , N , K } ) |
26 |
19 21 22 24 25
|
syl13anc |
|- ( ph -> sup ( { M , N , K } , RR* , < ) e. { M , N , K } ) |
27 |
17 26
|
sseldd |
|- ( ph -> sup ( { M , N , K } , RR* , < ) e. ZZ ) |
28 |
15 27
|
sselid |
|- ( ph -> sup ( { M , N , K } , RR* , < ) e. RR* ) |
29 |
28
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> sup ( { M , N , K } , RR* , < ) e. RR* ) |
30 |
|
eluzelre |
|- ( k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) -> k e. RR ) |
31 |
30
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> k e. RR ) |
32 |
31
|
rexrd |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> k e. RR* ) |
33 |
|
tpid3g |
|- ( K e. ZZ -> K e. { M , N , K } ) |
34 |
6 33
|
syl |
|- ( ph -> K e. { M , N , K } ) |
35 |
|
eqid |
|- sup ( { M , N , K } , RR* , < ) = sup ( { M , N , K } , RR* , < ) |
36 |
24 34 35
|
supxrubd |
|- ( ph -> K <_ sup ( { M , N , K } , RR* , < ) ) |
37 |
36
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> K <_ sup ( { M , N , K } , RR* , < ) ) |
38 |
|
eluzle |
|- ( k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) -> sup ( { M , N , K } , RR* , < ) <_ k ) |
39 |
38
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> sup ( { M , N , K } , RR* , < ) <_ k ) |
40 |
14 29 32 37 39
|
xrletrd |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> K <_ k ) |
41 |
8 9 11 40
|
eluzd |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> k e. ( ZZ>= ` K ) ) |
42 |
41 7
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) -> ( F ` k ) = ( G ` k ) ) |
43 |
1 42
|
ralrimia |
|- ( ph -> A. k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ( F ` k ) = ( G ` k ) ) |
44 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
45 |
|
tpid1g |
|- ( M e. ZZ -> M e. { M , N , K } ) |
46 |
2 45
|
syl |
|- ( ph -> M e. { M , N , K } ) |
47 |
24 46 35
|
supxrubd |
|- ( ph -> M <_ sup ( { M , N , K } , RR* , < ) ) |
48 |
44 2 27 47
|
eluzd |
|- ( ph -> sup ( { M , N , K } , RR* , < ) e. ( ZZ>= ` M ) ) |
49 |
|
uzss |
|- ( sup ( { M , N , K } , RR* , < ) e. ( ZZ>= ` M ) -> ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) C_ ( ZZ>= ` M ) ) |
50 |
48 49
|
syl |
|- ( ph -> ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) C_ ( ZZ>= ` M ) ) |
51 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
52 |
|
tpid2g |
|- ( N e. ZZ -> N e. { M , N , K } ) |
53 |
4 52
|
syl |
|- ( ph -> N e. { M , N , K } ) |
54 |
24 53 35
|
supxrubd |
|- ( ph -> N <_ sup ( { M , N , K } , RR* , < ) ) |
55 |
51 4 27 54
|
eluzd |
|- ( ph -> sup ( { M , N , K } , RR* , < ) e. ( ZZ>= ` N ) ) |
56 |
|
uzss |
|- ( sup ( { M , N , K } , RR* , < ) e. ( ZZ>= ` N ) -> ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) C_ ( ZZ>= ` N ) ) |
57 |
55 56
|
syl |
|- ( ph -> ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) C_ ( ZZ>= ` N ) ) |
58 |
|
fvreseq0 |
|- ( ( ( F Fn ( ZZ>= ` M ) /\ G Fn ( ZZ>= ` N ) ) /\ ( ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) C_ ( ZZ>= ` M ) /\ ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) C_ ( ZZ>= ` N ) ) ) -> ( ( F |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) = ( G |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) <-> A. k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ( F ` k ) = ( G ` k ) ) ) |
59 |
3 5 50 57 58
|
syl22anc |
|- ( ph -> ( ( F |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) = ( G |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) <-> A. k e. ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ( F ` k ) = ( G ` k ) ) ) |
60 |
43 59
|
mpbird |
|- ( ph -> ( F |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) = ( G |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) ) |
61 |
60
|
fveq2d |
|- ( ph -> ( limsup ` ( F |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) ) = ( limsup ` ( G |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) ) ) |
62 |
|
eqid |
|- ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) = ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) |
63 |
|
fvexd |
|- ( ph -> ( ZZ>= ` M ) e. _V ) |
64 |
3 63
|
fnexd |
|- ( ph -> F e. _V ) |
65 |
3
|
fndmd |
|- ( ph -> dom F = ( ZZ>= ` M ) ) |
66 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
67 |
65 66
|
eqsstrdi |
|- ( ph -> dom F C_ ZZ ) |
68 |
27 62 64 67
|
limsupresuz2 |
|- ( ph -> ( limsup ` ( F |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) ) = ( limsup ` F ) ) |
69 |
|
fvexd |
|- ( ph -> ( ZZ>= ` N ) e. _V ) |
70 |
5 69
|
fnexd |
|- ( ph -> G e. _V ) |
71 |
5
|
fndmd |
|- ( ph -> dom G = ( ZZ>= ` N ) ) |
72 |
|
uzssz |
|- ( ZZ>= ` N ) C_ ZZ |
73 |
71 72
|
eqsstrdi |
|- ( ph -> dom G C_ ZZ ) |
74 |
27 62 70 73
|
limsupresuz2 |
|- ( ph -> ( limsup ` ( G |` ( ZZ>= ` sup ( { M , N , K } , RR* , < ) ) ) ) = ( limsup ` G ) ) |
75 |
61 68 74
|
3eqtr3d |
|- ( ph -> ( limsup ` F ) = ( limsup ` G ) ) |