Metamath Proof Explorer


Theorem limsupequz

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequz.1
|- F/ k ph
limsupequz.2
|- F/_ k F
limsupequz.3
|- F/_ k G
limsupequz.4
|- ( ph -> M e. ZZ )
limsupequz.5
|- ( ph -> F Fn ( ZZ>= ` M ) )
limsupequz.6
|- ( ph -> N e. ZZ )
limsupequz.7
|- ( ph -> G Fn ( ZZ>= ` N ) )
limsupequz.8
|- ( ph -> K e. ZZ )
limsupequz.9
|- ( ( ph /\ k e. ( ZZ>= ` K ) ) -> ( F ` k ) = ( G ` k ) )
Assertion limsupequz
|- ( ph -> ( limsup ` F ) = ( limsup ` G ) )

Proof

Step Hyp Ref Expression
1 limsupequz.1
 |-  F/ k ph
2 limsupequz.2
 |-  F/_ k F
3 limsupequz.3
 |-  F/_ k G
4 limsupequz.4
 |-  ( ph -> M e. ZZ )
5 limsupequz.5
 |-  ( ph -> F Fn ( ZZ>= ` M ) )
6 limsupequz.6
 |-  ( ph -> N e. ZZ )
7 limsupequz.7
 |-  ( ph -> G Fn ( ZZ>= ` N ) )
8 limsupequz.8
 |-  ( ph -> K e. ZZ )
9 limsupequz.9
 |-  ( ( ph /\ k e. ( ZZ>= ` K ) ) -> ( F ` k ) = ( G ` k ) )
10 nfv
 |-  F/ j ph
11 nfv
 |-  F/ k j e. ( ZZ>= ` K )
12 1 11 nfan
 |-  F/ k ( ph /\ j e. ( ZZ>= ` K ) )
13 nfcv
 |-  F/_ k j
14 2 13 nffv
 |-  F/_ k ( F ` j )
15 3 13 nffv
 |-  F/_ k ( G ` j )
16 14 15 nfeq
 |-  F/ k ( F ` j ) = ( G ` j )
17 12 16 nfim
 |-  F/ k ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( F ` j ) = ( G ` j ) )
18 eleq1w
 |-  ( k = j -> ( k e. ( ZZ>= ` K ) <-> j e. ( ZZ>= ` K ) ) )
19 18 anbi2d
 |-  ( k = j -> ( ( ph /\ k e. ( ZZ>= ` K ) ) <-> ( ph /\ j e. ( ZZ>= ` K ) ) ) )
20 fveq2
 |-  ( k = j -> ( F ` k ) = ( F ` j ) )
21 fveq2
 |-  ( k = j -> ( G ` k ) = ( G ` j ) )
22 20 21 eqeq12d
 |-  ( k = j -> ( ( F ` k ) = ( G ` k ) <-> ( F ` j ) = ( G ` j ) ) )
23 19 22 imbi12d
 |-  ( k = j -> ( ( ( ph /\ k e. ( ZZ>= ` K ) ) -> ( F ` k ) = ( G ` k ) ) <-> ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( F ` j ) = ( G ` j ) ) ) )
24 17 23 9 chvarfv
 |-  ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( F ` j ) = ( G ` j ) )
25 10 4 5 6 7 8 24 limsupequzlem
 |-  ( ph -> ( limsup ` F ) = ( limsup ` G ) )