Step |
Hyp |
Ref |
Expression |
1 |
|
limsupre2lem.1 |
⊢ Ⅎ 𝑗 𝐹 |
2 |
|
limsupre2lem.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
3 |
|
limsupre2lem.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
4 |
|
reex |
⊢ ℝ ∈ V |
5 |
4
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
6 |
5 2
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
7 |
3 6
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
8 |
7
|
limsupcld |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
9 |
|
xrre4 |
⊢ ( ( lim sup ‘ 𝐹 ) ∈ ℝ* → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ( lim sup ‘ 𝐹 ) ≠ -∞ ∧ ( lim sup ‘ 𝐹 ) ≠ +∞ ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ( lim sup ‘ 𝐹 ) ≠ -∞ ∧ ( lim sup ‘ 𝐹 ) ≠ +∞ ) ) ) |
11 |
|
df-ne |
⊢ ( ( lim sup ‘ 𝐹 ) ≠ -∞ ↔ ¬ ( lim sup ‘ 𝐹 ) = -∞ ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≠ -∞ ↔ ¬ ( lim sup ‘ 𝐹 ) = -∞ ) ) |
13 |
1 2 3
|
limsupmnf |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
14 |
13
|
notbid |
⊢ ( 𝜑 → ( ¬ ( lim sup ‘ 𝐹 ) = -∞ ↔ ¬ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
15 |
|
annim |
⊢ ( ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ¬ ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
16 |
15
|
rexbii |
⊢ ( ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∃ 𝑗 ∈ 𝐴 ¬ ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
17 |
|
rexnal |
⊢ ( ∃ 𝑗 ∈ 𝐴 ¬ ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ¬ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
18 |
16 17
|
bitri |
⊢ ( ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ¬ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
19 |
18
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∀ 𝑘 ∈ ℝ ¬ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
20 |
|
ralnex |
⊢ ( ∀ 𝑘 ∈ ℝ ¬ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ¬ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
21 |
19 20
|
bitri |
⊢ ( ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ¬ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
22 |
21
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∃ 𝑥 ∈ ℝ ¬ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
23 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℝ ¬ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
24 |
22 23
|
bitr2i |
⊢ ( ¬ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
27 |
26
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
28 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
29 |
28
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
30 |
27 29
|
xrltnled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( 𝑥 < ( 𝐹 ‘ 𝑗 ) ↔ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
31 |
30
|
bicomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) |
32 |
31
|
anbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
33 |
32
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
34 |
33
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
35 |
34
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
36 |
25 35
|
bitrd |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
37 |
12 14 36
|
3bitrd |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≠ -∞ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
38 |
|
df-ne |
⊢ ( ( lim sup ‘ 𝐹 ) ≠ +∞ ↔ ¬ ( lim sup ‘ 𝐹 ) = +∞ ) |
39 |
38
|
a1i |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≠ +∞ ↔ ¬ ( lim sup ‘ 𝐹 ) = +∞ ) ) |
40 |
1 2 3
|
limsuppnf |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
41 |
40
|
notbid |
⊢ ( 𝜑 → ( ¬ ( lim sup ‘ 𝐹 ) = +∞ ↔ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
42 |
29 27
|
xrltnled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑗 ) < 𝑥 ↔ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
43 |
42
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ↔ ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
44 |
43
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
45 |
44
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
46 |
45
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
47 |
|
imnan |
⊢ ( ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
48 |
47
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ 𝐴 ¬ ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
49 |
|
ralnex |
⊢ ( ∀ 𝑗 ∈ 𝐴 ¬ ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
50 |
48 49
|
bitri |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
51 |
50
|
rexbii |
⊢ ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ∃ 𝑘 ∈ ℝ ¬ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
52 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ℝ ¬ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
53 |
51 52
|
bitri |
⊢ ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
54 |
53
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ∃ 𝑥 ∈ ℝ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
55 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℝ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
56 |
54 55
|
bitri |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
57 |
56
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
58 |
46 57
|
bitr2d |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) |
59 |
39 41 58
|
3bitrd |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≠ +∞ ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) |
60 |
37 59
|
anbi12d |
⊢ ( 𝜑 → ( ( ( lim sup ‘ 𝐹 ) ≠ -∞ ∧ ( lim sup ‘ 𝐹 ) ≠ +∞ ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) ) |
61 |
10 60
|
bitrd |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) ) |