| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupre2.1 |
⊢ Ⅎ 𝑗 𝐹 |
| 2 |
|
limsupre2.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 3 |
|
limsupre2.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐹 |
| 5 |
4 2 3
|
limsupre2lem |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ∧ ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ ℝ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑦 ) ) ) ) |
| 6 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 < ( 𝐹 ‘ 𝑙 ) ↔ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ) |
| 7 |
6
|
anbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑖 ≤ 𝑙 ∧ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ↔ ( 𝑖 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 9 |
8
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 10 |
|
breq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 ≤ 𝑙 ↔ 𝑘 ≤ 𝑙 ) ) |
| 11 |
10
|
anbi1d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑖 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ↔ ( 𝑘 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 12 |
11
|
rexbidv |
⊢ ( 𝑖 = 𝑘 → ( ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∃ 𝑙 ∈ 𝐴 ( 𝑘 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 13 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ≤ 𝑙 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑗 < |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑙 |
| 17 |
1 16
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) |
| 18 |
14 15 17
|
nfbr |
⊢ Ⅎ 𝑗 𝑥 < ( 𝐹 ‘ 𝑙 ) |
| 19 |
13 18
|
nfan |
⊢ Ⅎ 𝑗 ( 𝑘 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) |
| 21 |
|
breq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑗 ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 23 |
22
|
breq2d |
⊢ ( 𝑙 = 𝑗 → ( 𝑥 < ( 𝐹 ‘ 𝑙 ) ↔ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) |
| 24 |
21 23
|
anbi12d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑘 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ↔ ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 25 |
19 20 24
|
cbvrexw |
⊢ ( ∃ 𝑙 ∈ 𝐴 ( 𝑘 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) |
| 26 |
25
|
a1i |
⊢ ( 𝑖 = 𝑘 → ( ∃ 𝑙 ∈ 𝐴 ( 𝑘 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 27 |
12 26
|
bitrd |
⊢ ( 𝑖 = 𝑘 → ( ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 28 |
27
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) |
| 29 |
28
|
a1i |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑥 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 30 |
9 29
|
bitrd |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 31 |
30
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 33 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑙 ) < 𝑦 ↔ ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ) |
| 34 |
33
|
imbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑦 ) ↔ ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ) ) |
| 35 |
34
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑦 ) ↔ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ) ) |
| 36 |
35
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ ℝ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑦 ) ↔ ∃ 𝑖 ∈ ℝ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ) ) |
| 37 |
10
|
imbi1d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ↔ ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ) ) |
| 38 |
37
|
ralbidv |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ↔ ∀ 𝑙 ∈ 𝐴 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ) ) |
| 39 |
17 15 14
|
nfbr |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) < 𝑥 |
| 40 |
13 39
|
nfim |
⊢ Ⅎ 𝑗 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) |
| 41 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) |
| 42 |
22
|
breq1d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝐹 ‘ 𝑙 ) < 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) |
| 43 |
21 42
|
imbi12d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ↔ ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) |
| 44 |
40 41 43
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ 𝐴 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) |
| 45 |
44
|
a1i |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ 𝐴 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) |
| 46 |
38 45
|
bitrd |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) |
| 47 |
46
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ ℝ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) |
| 48 |
47
|
a1i |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ ℝ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑥 ) ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) |
| 49 |
36 48
|
bitrd |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ ℝ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑦 ) ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) |
| 50 |
49
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ ℝ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑦 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ ℝ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑦 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) |
| 52 |
32 51
|
anbi12d |
⊢ ( 𝜑 → ( ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 ∧ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ∧ ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ ℝ ∀ 𝑙 ∈ 𝐴 ( 𝑖 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) < 𝑦 ) ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) ) |
| 53 |
5 52
|
bitrd |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) ) ) ) |