Step |
Hyp |
Ref |
Expression |
1 |
|
limsupmnfuzlem.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
limsupmnfuzlem.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
limsupmnfuzlem.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐹 |
5 |
|
uzssre |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
6 |
2 5
|
eqsstri |
⊢ 𝑍 ⊆ ℝ |
7 |
6
|
a1i |
⊢ ( 𝜑 → 𝑍 ⊆ ℝ ) |
8 |
4 7 3
|
limsupmnf |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
9 |
|
breq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗 ) ) |
10 |
9
|
imbi1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑘 = 𝑖 → ( ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
12 |
11
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
13 |
12
|
biimpi |
⊢ ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
14 |
|
iftrue |
⊢ ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) = ( ⌈ ‘ 𝑖 ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) = ( ⌈ ‘ 𝑖 ) ) |
16 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) → 𝑀 ∈ ℤ ) |
17 |
|
ceilcl |
⊢ ( 𝑖 ∈ ℝ → ( ⌈ ‘ 𝑖 ) ∈ ℤ ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) → ( ⌈ ‘ 𝑖 ) ∈ ℤ ) |
19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) → 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) |
20 |
2 16 18 19
|
eluzd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) → ( ⌈ ‘ 𝑖 ) ∈ 𝑍 ) |
21 |
15 20
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ∈ 𝑍 ) |
22 |
|
iffalse |
⊢ ( ¬ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) = 𝑀 ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ ¬ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) = 𝑀 ) |
24 |
1 2
|
uzidd2 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ ¬ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) → 𝑀 ∈ 𝑍 ) |
26 |
23 25
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ ¬ 𝑀 ≤ ( ⌈ ‘ 𝑖 ) ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ∈ 𝑍 ) |
27 |
21 26
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ∈ 𝑍 ) |
28 |
27
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ∈ 𝑍 ) |
29 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
30 |
|
nfv |
⊢ Ⅎ 𝑗 𝑖 ∈ ℝ |
31 |
|
nfra1 |
⊢ Ⅎ 𝑗 ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
32 |
29 30 31
|
nf3an |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
33 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑖 ∈ ℝ ) |
34 |
6 27
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ∈ ℝ ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ∈ ℝ ) |
36 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) → 𝑗 ∈ ℝ ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑗 ∈ ℝ ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) → 𝑖 ∈ ℝ ) |
39 |
17
|
zred |
⊢ ( 𝑖 ∈ ℝ → ( ⌈ ‘ 𝑖 ) ∈ ℝ ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) → ( ⌈ ‘ 𝑖 ) ∈ ℝ ) |
41 |
|
ceilge |
⊢ ( 𝑖 ∈ ℝ → 𝑖 ≤ ( ⌈ ‘ 𝑖 ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) → 𝑖 ≤ ( ⌈ ‘ 𝑖 ) ) |
43 |
6 24
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
45 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ⌈ ‘ 𝑖 ) ∈ ℝ ) → ( ⌈ ‘ 𝑖 ) ≤ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) |
46 |
44 40 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) → ( ⌈ ‘ 𝑖 ) ≤ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) |
47 |
38 40 34 42 46
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) → 𝑖 ≤ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑖 ≤ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) |
49 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ≤ 𝑗 ) |
50 |
49
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ≤ 𝑗 ) |
51 |
33 35 37 48 50
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑖 ≤ 𝑗 ) |
52 |
51
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑖 ≤ 𝑗 ) |
53 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
54 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑀 ∈ ℤ ) |
55 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) → 𝑗 ∈ ℤ ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑗 ∈ ℤ ) |
57 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑀 ∈ ℝ ) |
58 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ⌈ ‘ 𝑖 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) |
59 |
43 39 58
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑀 ≤ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) |
61 |
57 35 37 60 50
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑀 ≤ 𝑗 ) |
62 |
2 54 56 61
|
eluzd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑗 ∈ 𝑍 ) |
63 |
62
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → 𝑗 ∈ 𝑍 ) |
64 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
65 |
53 63 64
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
66 |
52 65
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
67 |
66
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
68 |
32 67
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
69 |
|
fveq2 |
⊢ ( 𝑘 = if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) → ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ) |
70 |
69
|
raleqdv |
⊢ ( 𝑘 = if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
71 |
70
|
rspcev |
⊢ ( ( if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ⌈ ‘ 𝑖 ) , ( ⌈ ‘ 𝑖 ) , 𝑀 ) ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
72 |
28 68 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
73 |
72
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ ℝ → ( ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
74 |
73
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
75 |
74
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑖 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
76 |
13 75
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
77 |
76
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
78 |
|
rexss |
⊢ ( 𝑍 ⊆ ℝ → ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ ℝ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
79 |
6 78
|
ax-mp |
⊢ ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ ℝ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
80 |
79
|
biimpi |
⊢ ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 → ∃ 𝑘 ∈ ℝ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
81 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ∈ 𝑍 |
82 |
|
nfra1 |
⊢ Ⅎ 𝑗 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 |
83 |
81 82
|
nfan |
⊢ Ⅎ 𝑗 ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
84 |
|
simp1r |
⊢ ( ( ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗 ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
85 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑘 ) |
86 |
2
|
eluzelz2 |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
87 |
86
|
3ad2ant1 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗 ) → 𝑘 ∈ ℤ ) |
88 |
2
|
eluzelz2 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
89 |
88
|
3ad2ant2 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ ℤ ) |
90 |
|
simp3 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗 ) → 𝑘 ≤ 𝑗 ) |
91 |
85 87 89 90
|
eluzd |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
92 |
91
|
3adant1r |
⊢ ( ( ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
93 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
94 |
84 92 93
|
syl2anc |
⊢ ( ( ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
95 |
94
|
3exp |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ( 𝑗 ∈ 𝑍 → ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
96 |
83 95
|
ralrimi |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
97 |
96
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
98 |
97
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
99 |
98
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℝ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
100 |
80 99
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
101 |
100
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
102 |
77 101
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
103 |
102
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
104 |
8 103
|
bitrd |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |