Metamath Proof Explorer


Theorem limsupre2lem

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre2lem.1 _ j F
limsupre2lem.2 φ A
limsupre2lem.3 φ F : A *
Assertion limsupre2lem φ lim sup F x k j A k j x < F j x k j A k j F j < x

Proof

Step Hyp Ref Expression
1 limsupre2lem.1 _ j F
2 limsupre2lem.2 φ A
3 limsupre2lem.3 φ F : A *
4 reex V
5 4 a1i φ V
6 5 2 ssexd φ A V
7 3 6 fexd φ F V
8 7 limsupcld φ lim sup F *
9 xrre4 lim sup F * lim sup F lim sup F −∞ lim sup F +∞
10 8 9 syl φ lim sup F lim sup F −∞ lim sup F +∞
11 df-ne lim sup F −∞ ¬ lim sup F = −∞
12 11 a1i φ lim sup F −∞ ¬ lim sup F = −∞
13 1 2 3 limsupmnf φ lim sup F = −∞ x k j A k j F j x
14 13 notbid φ ¬ lim sup F = −∞ ¬ x k j A k j F j x
15 annim k j ¬ F j x ¬ k j F j x
16 15 rexbii j A k j ¬ F j x j A ¬ k j F j x
17 rexnal j A ¬ k j F j x ¬ j A k j F j x
18 16 17 bitri j A k j ¬ F j x ¬ j A k j F j x
19 18 ralbii k j A k j ¬ F j x k ¬ j A k j F j x
20 ralnex k ¬ j A k j F j x ¬ k j A k j F j x
21 19 20 bitri k j A k j ¬ F j x ¬ k j A k j F j x
22 21 rexbii x k j A k j ¬ F j x x ¬ k j A k j F j x
23 rexnal x ¬ k j A k j F j x ¬ x k j A k j F j x
24 22 23 bitr2i ¬ x k j A k j F j x x k j A k j ¬ F j x
25 24 a1i φ ¬ x k j A k j F j x x k j A k j ¬ F j x
26 simplr φ x j A x
27 26 rexrd φ x j A x *
28 3 adantr φ x F : A *
29 28 ffvelrnda φ x j A F j *
30 27 29 xrltnled φ x j A x < F j ¬ F j x
31 30 bicomd φ x j A ¬ F j x x < F j
32 31 anbi2d φ x j A k j ¬ F j x k j x < F j
33 32 rexbidva φ x j A k j ¬ F j x j A k j x < F j
34 33 ralbidv φ x k j A k j ¬ F j x k j A k j x < F j
35 34 rexbidva φ x k j A k j ¬ F j x x k j A k j x < F j
36 25 35 bitrd φ ¬ x k j A k j F j x x k j A k j x < F j
37 12 14 36 3bitrd φ lim sup F −∞ x k j A k j x < F j
38 df-ne lim sup F +∞ ¬ lim sup F = +∞
39 38 a1i φ lim sup F +∞ ¬ lim sup F = +∞
40 1 2 3 limsuppnf φ lim sup F = +∞ x k j A k j x F j
41 40 notbid φ ¬ lim sup F = +∞ ¬ x k j A k j x F j
42 29 27 xrltnled φ x j A F j < x ¬ x F j
43 42 imbi2d φ x j A k j F j < x k j ¬ x F j
44 43 ralbidva φ x j A k j F j < x j A k j ¬ x F j
45 44 rexbidv φ x k j A k j F j < x k j A k j ¬ x F j
46 45 rexbidva φ x k j A k j F j < x x k j A k j ¬ x F j
47 imnan k j ¬ x F j ¬ k j x F j
48 47 ralbii j A k j ¬ x F j j A ¬ k j x F j
49 ralnex j A ¬ k j x F j ¬ j A k j x F j
50 48 49 bitri j A k j ¬ x F j ¬ j A k j x F j
51 50 rexbii k j A k j ¬ x F j k ¬ j A k j x F j
52 rexnal k ¬ j A k j x F j ¬ k j A k j x F j
53 51 52 bitri k j A k j ¬ x F j ¬ k j A k j x F j
54 53 rexbii x k j A k j ¬ x F j x ¬ k j A k j x F j
55 rexnal x ¬ k j A k j x F j ¬ x k j A k j x F j
56 54 55 bitri x k j A k j ¬ x F j ¬ x k j A k j x F j
57 56 a1i φ x k j A k j ¬ x F j ¬ x k j A k j x F j
58 46 57 bitr2d φ ¬ x k j A k j x F j x k j A k j F j < x
59 39 41 58 3bitrd φ lim sup F +∞ x k j A k j F j < x
60 37 59 anbi12d φ lim sup F −∞ lim sup F +∞ x k j A k j x < F j x k j A k j F j < x
61 10 60 bitrd φ lim sup F x k j A k j x < F j x k j A k j F j < x