| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupre2lem.1 |
|
| 2 |
|
limsupre2lem.2 |
|
| 3 |
|
limsupre2lem.3 |
|
| 4 |
|
reex |
|
| 5 |
4
|
a1i |
|
| 6 |
5 2
|
ssexd |
|
| 7 |
3 6
|
fexd |
|
| 8 |
7
|
limsupcld |
|
| 9 |
|
xrre4 |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
df-ne |
|
| 12 |
11
|
a1i |
|
| 13 |
1 2 3
|
limsupmnf |
|
| 14 |
13
|
notbid |
|
| 15 |
|
annim |
|
| 16 |
15
|
rexbii |
|
| 17 |
|
rexnal |
|
| 18 |
16 17
|
bitri |
|
| 19 |
18
|
ralbii |
|
| 20 |
|
ralnex |
|
| 21 |
19 20
|
bitri |
|
| 22 |
21
|
rexbii |
|
| 23 |
|
rexnal |
|
| 24 |
22 23
|
bitr2i |
|
| 25 |
24
|
a1i |
|
| 26 |
|
simplr |
|
| 27 |
26
|
rexrd |
|
| 28 |
3
|
adantr |
|
| 29 |
28
|
ffvelcdmda |
|
| 30 |
27 29
|
xrltnled |
|
| 31 |
30
|
bicomd |
|
| 32 |
31
|
anbi2d |
|
| 33 |
32
|
rexbidva |
|
| 34 |
33
|
ralbidv |
|
| 35 |
34
|
rexbidva |
|
| 36 |
25 35
|
bitrd |
|
| 37 |
12 14 36
|
3bitrd |
|
| 38 |
|
df-ne |
|
| 39 |
38
|
a1i |
|
| 40 |
1 2 3
|
limsuppnf |
|
| 41 |
40
|
notbid |
|
| 42 |
29 27
|
xrltnled |
|
| 43 |
42
|
imbi2d |
|
| 44 |
43
|
ralbidva |
|
| 45 |
44
|
rexbidv |
|
| 46 |
45
|
rexbidva |
|
| 47 |
|
imnan |
|
| 48 |
47
|
ralbii |
|
| 49 |
|
ralnex |
|
| 50 |
48 49
|
bitri |
|
| 51 |
50
|
rexbii |
|
| 52 |
|
rexnal |
|
| 53 |
51 52
|
bitri |
|
| 54 |
53
|
rexbii |
|
| 55 |
|
rexnal |
|
| 56 |
54 55
|
bitri |
|
| 57 |
56
|
a1i |
|
| 58 |
46 57
|
bitr2d |
|
| 59 |
39 41 58
|
3bitrd |
|
| 60 |
37 59
|
anbi12d |
|
| 61 |
10 60
|
bitrd |
|