Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupmnf.j | |
|
limsupmnf.a | |
||
limsupmnf.f | |
||
Assertion | limsupmnf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupmnf.j | |
|
2 | limsupmnf.a | |
|
3 | limsupmnf.f | |
|
4 | eqid | |
|
5 | 2 3 4 | limsupmnflem | |
6 | breq2 | |
|
7 | 6 | imbi2d | |
8 | 7 | ralbidv | |
9 | 8 | rexbidv | |
10 | breq1 | |
|
11 | 10 | imbi1d | |
12 | 11 | ralbidv | |
13 | nfv | |
|
14 | nfcv | |
|
15 | 1 14 | nffv | |
16 | nfcv | |
|
17 | nfcv | |
|
18 | 15 16 17 | nfbr | |
19 | 13 18 | nfim | |
20 | nfv | |
|
21 | breq2 | |
|
22 | fveq2 | |
|
23 | 22 | breq1d | |
24 | 21 23 | imbi12d | |
25 | 19 20 24 | cbvralw | |
26 | 25 | a1i | |
27 | 12 26 | bitrd | |
28 | 27 | cbvrexvw | |
29 | 28 | a1i | |
30 | 9 29 | bitrd | |
31 | 30 | cbvralvw | |
32 | 31 | a1i | |
33 | 5 32 | bitrd | |