Metamath Proof Explorer


Theorem limsupmnf

Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupmnf.j _jF
limsupmnf.a φA
limsupmnf.f φF:A*
Assertion limsupmnf φlim supF=−∞xkjAkjFjx

Proof

Step Hyp Ref Expression
1 limsupmnf.j _jF
2 limsupmnf.a φA
3 limsupmnf.f φF:A*
4 eqid isupFi+∞*<=isupFi+∞*<
5 2 3 4 limsupmnflem φlim supF=−∞yilAilFly
6 breq2 y=xFlyFlx
7 6 imbi2d y=xilFlyilFlx
8 7 ralbidv y=xlAilFlylAilFlx
9 8 rexbidv y=xilAilFlyilAilFlx
10 breq1 i=kilkl
11 10 imbi1d i=kilFlxklFlx
12 11 ralbidv i=klAilFlxlAklFlx
13 nfv jkl
14 nfcv _jl
15 1 14 nffv _jFl
16 nfcv _j
17 nfcv _jx
18 15 16 17 nfbr jFlx
19 13 18 nfim jklFlx
20 nfv lkjFjx
21 breq2 l=jklkj
22 fveq2 l=jFl=Fj
23 22 breq1d l=jFlxFjx
24 21 23 imbi12d l=jklFlxkjFjx
25 19 20 24 cbvralw lAklFlxjAkjFjx
26 25 a1i i=klAklFlxjAkjFjx
27 12 26 bitrd i=klAilFlxjAkjFjx
28 27 cbvrexvw ilAilFlxkjAkjFjx
29 28 a1i y=xilAilFlxkjAkjFjx
30 9 29 bitrd y=xilAilFlykjAkjFjx
31 30 cbvralvw yilAilFlyxkjAkjFjx
32 31 a1i φyilAilFlyxkjAkjFjx
33 5 32 bitrd φlim supF=−∞xkjAkjFjx