Metamath Proof Explorer


Theorem limsupmnf

Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupmnf.j _ j F
limsupmnf.a φ A
limsupmnf.f φ F : A *
Assertion limsupmnf φ lim sup F = −∞ x k j A k j F j x

Proof

Step Hyp Ref Expression
1 limsupmnf.j _ j F
2 limsupmnf.a φ A
3 limsupmnf.f φ F : A *
4 eqid i sup F i +∞ * < = i sup F i +∞ * <
5 2 3 4 limsupmnflem φ lim sup F = −∞ y i l A i l F l y
6 breq2 y = x F l y F l x
7 6 imbi2d y = x i l F l y i l F l x
8 7 ralbidv y = x l A i l F l y l A i l F l x
9 8 rexbidv y = x i l A i l F l y i l A i l F l x
10 breq1 i = k i l k l
11 10 imbi1d i = k i l F l x k l F l x
12 11 ralbidv i = k l A i l F l x l A k l F l x
13 nfv j k l
14 nfcv _ j l
15 1 14 nffv _ j F l
16 nfcv _ j
17 nfcv _ j x
18 15 16 17 nfbr j F l x
19 13 18 nfim j k l F l x
20 nfv l k j F j x
21 breq2 l = j k l k j
22 fveq2 l = j F l = F j
23 22 breq1d l = j F l x F j x
24 21 23 imbi12d l = j k l F l x k j F j x
25 19 20 24 cbvralw l A k l F l x j A k j F j x
26 25 a1i i = k l A k l F l x j A k j F j x
27 12 26 bitrd i = k l A i l F l x j A k j F j x
28 27 cbvrexvw i l A i l F l x k j A k j F j x
29 28 a1i y = x i l A i l F l x k j A k j F j x
30 9 29 bitrd y = x i l A i l F l y k j A k j F j x
31 30 cbvralvw y i l A i l F l y x k j A k j F j x
32 31 a1i φ y i l A i l F l y x k j A k j F j x
33 5 32 bitrd φ lim sup F = −∞ x k j A k j F j x