Metamath Proof Explorer


Theorem xrre4

Description: An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion xrre4 A * A A −∞ A +∞

Proof

Step Hyp Ref Expression
1 renemnf A A −∞
2 1 adantl A * A A −∞
3 renepnf A A +∞
4 3 adantl A * A A +∞
5 2 4 jca A * A A −∞ A +∞
6 5 ex A * A A −∞ A +∞
7 simpl A * A −∞ A +∞ A *
8 simprl A * A −∞ A +∞ A −∞
9 simprr A * A −∞ A +∞ A +∞
10 7 8 9 xrred A * A −∞ A +∞ A
11 10 ex A * A −∞ A +∞ A
12 6 11 impbid A * A A −∞ A +∞