Step |
Hyp |
Ref |
Expression |
1 |
|
renemnf |
|- ( A e. RR -> A =/= -oo ) |
2 |
1
|
adantl |
|- ( ( A e. RR* /\ A e. RR ) -> A =/= -oo ) |
3 |
|
renepnf |
|- ( A e. RR -> A =/= +oo ) |
4 |
3
|
adantl |
|- ( ( A e. RR* /\ A e. RR ) -> A =/= +oo ) |
5 |
2 4
|
jca |
|- ( ( A e. RR* /\ A e. RR ) -> ( A =/= -oo /\ A =/= +oo ) ) |
6 |
5
|
ex |
|- ( A e. RR* -> ( A e. RR -> ( A =/= -oo /\ A =/= +oo ) ) ) |
7 |
|
simpl |
|- ( ( A e. RR* /\ ( A =/= -oo /\ A =/= +oo ) ) -> A e. RR* ) |
8 |
|
simprl |
|- ( ( A e. RR* /\ ( A =/= -oo /\ A =/= +oo ) ) -> A =/= -oo ) |
9 |
|
simprr |
|- ( ( A e. RR* /\ ( A =/= -oo /\ A =/= +oo ) ) -> A =/= +oo ) |
10 |
7 8 9
|
xrred |
|- ( ( A e. RR* /\ ( A =/= -oo /\ A =/= +oo ) ) -> A e. RR ) |
11 |
10
|
ex |
|- ( A e. RR* -> ( ( A =/= -oo /\ A =/= +oo ) -> A e. RR ) ) |
12 |
6 11
|
impbid |
|- ( A e. RR* -> ( A e. RR <-> ( A =/= -oo /\ A =/= +oo ) ) ) |