Metamath Proof Explorer


Table of Contents - 20.43.12.1. Fermat numbers

At first, the (sequence of) Fermat numbers (the -th Fermat number is denoted as ) is defined, see df-fmtno, and basic theorems are provided. Afterwards, it is shown that the first five Fermat numbers are prime, the (first) five Fermat primes, see fmtnofz04prm, but that the fifth Fermat number (counting starts at !) is not prime, see fmtno5nprm. The fourth Fermat number (i.e., the fifth Fermat prime) is currently the biggest number proven to be prime in set.mm, see 65537prm (previously, it was , see 4001prm).

Another important result of this section is Goldbach's theorem goldbachth, showing that two different Fermut numbers are coprime. By this, it can be proven that there is an infinite number of primes, see prminf2.

Finally, it is shown that every prime of the form must be a Fermat number (i.e., a Fermat prime), see 2pwp1prmfmtno.

  1. cfmtno
  2. df-fmtno
  3. fmtno
  4. fmtnoge3
  5. fmtnonn
  6. fmtnom1nn
  7. fmtnoodd
  8. fmtnorn
  9. fmtnof1
  10. fmtnoinf
  11. fmtnorec1
  12. sqrtpwpw2p
  13. fmtnosqrt
  14. fmtno0
  15. fmtno1
  16. fmtnorec2lem
  17. fmtnorec2
  18. fmtnodvds
  19. goldbachthlem1
  20. goldbachthlem2
  21. goldbachth
  22. fmtnorec3
  23. fmtnorec4
  24. fmtno2
  25. fmtno3
  26. fmtno4
  27. fmtno5lem1
  28. fmtno5lem2
  29. fmtno5lem3
  30. fmtno5lem4
  31. fmtno5
  32. fmtno0prm
  33. fmtno1prm
  34. fmtno2prm
  35. 257prm
  36. fmtno3prm
  37. odz2prm2pw
  38. fmtnoprmfac1lem
  39. fmtnoprmfac1
  40. fmtnoprmfac2lem1
  41. fmtnoprmfac2
  42. fmtnofac2lem
  43. fmtnofac2
  44. fmtnofac1
  45. fmtno4sqrt
  46. fmtno4prmfac
  47. fmtno4prmfac193
  48. fmtno4nprmfac193
  49. fmtno4prm
  50. 65537prm
  51. fmtnofz04prm
  52. fmtnole4prm
  53. fmtno5faclem1
  54. fmtno5faclem2
  55. fmtno5faclem3
  56. fmtno5fac
  57. fmtno5nprm
  58. prmdvdsfmtnof1lem1
  59. prmdvdsfmtnof1lem2
  60. prmdvdsfmtnof
  61. prmdvdsfmtnof1
  62. prminf2
  63. 2pwp1prm
  64. 2pwp1prmfmtno