| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelz |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | eluzelz |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 |  | eluzge2nn0 |  | 
						
							| 6 |  | fmtnonn |  | 
						
							| 7 | 6 | nnzd |  | 
						
							| 8 | 5 7 | syl |  | 
						
							| 9 |  | muldvds2 |  | 
						
							| 10 | 2 4 8 9 | syl2an3an |  | 
						
							| 11 |  | muldvds1 |  | 
						
							| 12 | 2 4 8 11 | syl2an3an |  | 
						
							| 13 |  | pm2.27 |  | 
						
							| 14 | 13 | ad2ant2lr |  | 
						
							| 15 |  | pm2.27 |  | 
						
							| 16 | 15 | ad2ant2l |  | 
						
							| 17 |  | oveq1 |  | 
						
							| 18 | 17 | oveq1d |  | 
						
							| 19 | 18 | eqeq2d |  | 
						
							| 20 | 19 | cbvrexvw |  | 
						
							| 21 |  | oveq1 |  | 
						
							| 22 | 21 | oveq1d |  | 
						
							| 23 | 22 | eqeq2d |  | 
						
							| 24 | 23 | cbvrexvw |  | 
						
							| 25 |  | simpl |  | 
						
							| 26 | 25 | adantl |  | 
						
							| 27 |  | 2nn0 |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 | 5 28 | nn0addcld |  | 
						
							| 30 | 28 29 | nn0expcld |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 26 31 | nn0mulcld |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 | 32 34 | nn0mulcld |  | 
						
							| 36 |  | nn0addcl |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 35 37 | nn0addcld |  | 
						
							| 39 |  | oveq1 |  | 
						
							| 40 | 39 | oveq1d |  | 
						
							| 41 | 40 | eqeq2d |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 |  | eqidd |  | 
						
							| 44 | 38 42 43 | rspcedvd |  | 
						
							| 45 |  | nn0cn |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 | 30 | nn0cnd |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 47 49 | mulcld |  | 
						
							| 51 | 33 | nn0cnd |  | 
						
							| 52 | 51 | adantl |  | 
						
							| 53 | 52 49 | mulcld |  | 
						
							| 54 | 50 53 | jca |  | 
						
							| 55 | 54 | adantr |  | 
						
							| 56 |  | muladd11r |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 | 25 | nn0cnd |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 | 59 52 49 | 3jca |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 |  | adddir |  | 
						
							| 63 | 61 62 | syl |  | 
						
							| 64 | 63 | eqcomd |  | 
						
							| 65 | 64 | oveq2d |  | 
						
							| 66 | 50 | adantr |  | 
						
							| 67 | 52 | adantr |  | 
						
							| 68 | 49 | adantr |  | 
						
							| 69 | 66 67 68 | mulassd |  | 
						
							| 70 | 69 | eqcomd |  | 
						
							| 71 | 70 | oveq1d |  | 
						
							| 72 | 50 52 | mulcld |  | 
						
							| 73 | 36 | nn0cnd |  | 
						
							| 74 | 73 | adantl |  | 
						
							| 75 | 72 74 49 | 3jca |  | 
						
							| 76 | 75 | adantr |  | 
						
							| 77 |  | adddir |  | 
						
							| 78 | 76 77 | syl |  | 
						
							| 79 | 65 71 78 | 3eqtr4d |  | 
						
							| 80 | 79 | oveq1d |  | 
						
							| 81 | 57 80 | eqtrd |  | 
						
							| 82 | 81 | eqeq1d |  | 
						
							| 83 | 82 | rexbidva |  | 
						
							| 84 | 44 83 | mpbird |  | 
						
							| 85 | 84 | adantll |  | 
						
							| 86 |  | oveq12 |  | 
						
							| 87 | 86 | ancoms |  | 
						
							| 88 | 87 | eqeq1d |  | 
						
							| 89 | 88 | rexbidv |  | 
						
							| 90 | 85 89 | syl5ibrcom |  | 
						
							| 91 | 90 | expd |  | 
						
							| 92 | 91 | anassrs |  | 
						
							| 93 | 92 | rexlimdva |  | 
						
							| 94 | 24 93 | biimtrid |  | 
						
							| 95 | 94 | com23 |  | 
						
							| 96 | 95 | rexlimdva |  | 
						
							| 97 | 20 96 | biimtrid |  | 
						
							| 98 | 97 | impd |  | 
						
							| 99 | 98 | adantr |  | 
						
							| 100 | 14 16 99 | syl2and |  | 
						
							| 101 | 100 | exp32 |  | 
						
							| 102 | 12 101 | syld |  | 
						
							| 103 | 10 102 | mpdd |  | 
						
							| 104 | 103 | expimpd |  | 
						
							| 105 | 104 | com23 |  |