Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|
2 |
1
|
anbi2d |
|
3 |
|
eqeq1 |
|
4 |
3
|
rexbidv |
|
5 |
2 4
|
imbi12d |
|
6 |
|
breq1 |
|
7 |
6
|
anbi2d |
|
8 |
|
eqeq1 |
|
9 |
8
|
rexbidv |
|
10 |
7 9
|
imbi12d |
|
11 |
|
breq1 |
|
12 |
11
|
anbi2d |
|
13 |
|
eqeq1 |
|
14 |
13
|
rexbidv |
|
15 |
12 14
|
imbi12d |
|
16 |
|
breq1 |
|
17 |
16
|
anbi2d |
|
18 |
|
eqeq1 |
|
19 |
18
|
rexbidv |
|
20 |
17 19
|
imbi12d |
|
21 |
|
breq1 |
|
22 |
21
|
anbi2d |
|
23 |
|
eqeq1 |
|
24 |
23
|
rexbidv |
|
25 |
22 24
|
imbi12d |
|
26 |
|
0nn0 |
|
27 |
26
|
a1i |
|
28 |
|
oveq1 |
|
29 |
28
|
oveq1d |
|
30 |
29
|
eqeq2d |
|
31 |
30
|
adantl |
|
32 |
|
2nn0 |
|
33 |
32
|
a1i |
|
34 |
|
eluzge2nn0 |
|
35 |
34 33
|
nn0addcld |
|
36 |
33 35
|
nn0expcld |
|
37 |
36
|
nn0cnd |
|
38 |
37
|
mul02d |
|
39 |
38
|
oveq1d |
|
40 |
|
0p1e1 |
|
41 |
39 40
|
eqtr2di |
|
42 |
27 31 41
|
rspcedvd |
|
43 |
42
|
adantr |
|
44 |
|
simpl |
|
45 |
44
|
adantl |
|
46 |
|
simpl |
|
47 |
|
simprr |
|
48 |
|
nnssnn0 |
|
49 |
|
fmtnoprmfac2 |
|
50 |
|
ssrexv |
|
51 |
48 49 50
|
mpsyl |
|
52 |
45 46 47 51
|
syl3anc |
|
53 |
52
|
ex |
|
54 |
|
fmtnofac2lem |
|
55 |
5 10 15 20 25 43 53 54
|
prmind |
|
56 |
55
|
expd |
|
57 |
56
|
3imp21 |
|