Metamath Proof Explorer


Theorem fmtnofac2

Description: Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 : Let F_n be a Fermat number. Let m be divisor of F_n. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021)

Ref Expression
Assertion fmtnofac2 N 2 M M FermatNo N k 0 M = k 2 N + 2 + 1

Proof

Step Hyp Ref Expression
1 breq1 x = 1 x FermatNo N 1 FermatNo N
2 1 anbi2d x = 1 N 2 x FermatNo N N 2 1 FermatNo N
3 eqeq1 x = 1 x = k 2 N + 2 + 1 1 = k 2 N + 2 + 1
4 3 rexbidv x = 1 k 0 x = k 2 N + 2 + 1 k 0 1 = k 2 N + 2 + 1
5 2 4 imbi12d x = 1 N 2 x FermatNo N k 0 x = k 2 N + 2 + 1 N 2 1 FermatNo N k 0 1 = k 2 N + 2 + 1
6 breq1 x = y x FermatNo N y FermatNo N
7 6 anbi2d x = y N 2 x FermatNo N N 2 y FermatNo N
8 eqeq1 x = y x = k 2 N + 2 + 1 y = k 2 N + 2 + 1
9 8 rexbidv x = y k 0 x = k 2 N + 2 + 1 k 0 y = k 2 N + 2 + 1
10 7 9 imbi12d x = y N 2 x FermatNo N k 0 x = k 2 N + 2 + 1 N 2 y FermatNo N k 0 y = k 2 N + 2 + 1
11 breq1 x = z x FermatNo N z FermatNo N
12 11 anbi2d x = z N 2 x FermatNo N N 2 z FermatNo N
13 eqeq1 x = z x = k 2 N + 2 + 1 z = k 2 N + 2 + 1
14 13 rexbidv x = z k 0 x = k 2 N + 2 + 1 k 0 z = k 2 N + 2 + 1
15 12 14 imbi12d x = z N 2 x FermatNo N k 0 x = k 2 N + 2 + 1 N 2 z FermatNo N k 0 z = k 2 N + 2 + 1
16 breq1 x = y z x FermatNo N y z FermatNo N
17 16 anbi2d x = y z N 2 x FermatNo N N 2 y z FermatNo N
18 eqeq1 x = y z x = k 2 N + 2 + 1 y z = k 2 N + 2 + 1
19 18 rexbidv x = y z k 0 x = k 2 N + 2 + 1 k 0 y z = k 2 N + 2 + 1
20 17 19 imbi12d x = y z N 2 x FermatNo N k 0 x = k 2 N + 2 + 1 N 2 y z FermatNo N k 0 y z = k 2 N + 2 + 1
21 breq1 x = M x FermatNo N M FermatNo N
22 21 anbi2d x = M N 2 x FermatNo N N 2 M FermatNo N
23 eqeq1 x = M x = k 2 N + 2 + 1 M = k 2 N + 2 + 1
24 23 rexbidv x = M k 0 x = k 2 N + 2 + 1 k 0 M = k 2 N + 2 + 1
25 22 24 imbi12d x = M N 2 x FermatNo N k 0 x = k 2 N + 2 + 1 N 2 M FermatNo N k 0 M = k 2 N + 2 + 1
26 0nn0 0 0
27 26 a1i N 2 0 0
28 oveq1 k = 0 k 2 N + 2 = 0 2 N + 2
29 28 oveq1d k = 0 k 2 N + 2 + 1 = 0 2 N + 2 + 1
30 29 eqeq2d k = 0 1 = k 2 N + 2 + 1 1 = 0 2 N + 2 + 1
31 30 adantl N 2 k = 0 1 = k 2 N + 2 + 1 1 = 0 2 N + 2 + 1
32 2nn0 2 0
33 32 a1i N 2 2 0
34 eluzge2nn0 N 2 N 0
35 34 33 nn0addcld N 2 N + 2 0
36 33 35 nn0expcld N 2 2 N + 2 0
37 36 nn0cnd N 2 2 N + 2
38 37 mul02d N 2 0 2 N + 2 = 0
39 38 oveq1d N 2 0 2 N + 2 + 1 = 0 + 1
40 0p1e1 0 + 1 = 1
41 39 40 eqtr2di N 2 1 = 0 2 N + 2 + 1
42 27 31 41 rspcedvd N 2 k 0 1 = k 2 N + 2 + 1
43 42 adantr N 2 1 FermatNo N k 0 1 = k 2 N + 2 + 1
44 simpl N 2 x FermatNo N N 2
45 44 adantl x N 2 x FermatNo N N 2
46 simpl x N 2 x FermatNo N x
47 simprr x N 2 x FermatNo N x FermatNo N
48 nnssnn0 0
49 fmtnoprmfac2 N 2 x x FermatNo N k x = k 2 N + 2 + 1
50 ssrexv 0 k x = k 2 N + 2 + 1 k 0 x = k 2 N + 2 + 1
51 48 49 50 mpsyl N 2 x x FermatNo N k 0 x = k 2 N + 2 + 1
52 45 46 47 51 syl3anc x N 2 x FermatNo N k 0 x = k 2 N + 2 + 1
53 52 ex x N 2 x FermatNo N k 0 x = k 2 N + 2 + 1
54 fmtnofac2lem y 2 z 2 N 2 y FermatNo N k 0 y = k 2 N + 2 + 1 N 2 z FermatNo N k 0 z = k 2 N + 2 + 1 N 2 y z FermatNo N k 0 y z = k 2 N + 2 + 1
55 5 10 15 20 25 43 53 54 prmind M N 2 M FermatNo N k 0 M = k 2 N + 2 + 1
56 55 expd M N 2 M FermatNo N k 0 M = k 2 N + 2 + 1
57 56 3imp21 N 2 M M FermatNo N k 0 M = k 2 N + 2 + 1