Description: Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 : Let F_n be a Fermat number. Let m be divisor of F_n. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fmtnofac2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |
|
2 | 1 | anbi2d | |
3 | eqeq1 | |
|
4 | 3 | rexbidv | |
5 | 2 4 | imbi12d | |
6 | breq1 | |
|
7 | 6 | anbi2d | |
8 | eqeq1 | |
|
9 | 8 | rexbidv | |
10 | 7 9 | imbi12d | |
11 | breq1 | |
|
12 | 11 | anbi2d | |
13 | eqeq1 | |
|
14 | 13 | rexbidv | |
15 | 12 14 | imbi12d | |
16 | breq1 | |
|
17 | 16 | anbi2d | |
18 | eqeq1 | |
|
19 | 18 | rexbidv | |
20 | 17 19 | imbi12d | |
21 | breq1 | |
|
22 | 21 | anbi2d | |
23 | eqeq1 | |
|
24 | 23 | rexbidv | |
25 | 22 24 | imbi12d | |
26 | 0nn0 | |
|
27 | 26 | a1i | |
28 | oveq1 | |
|
29 | 28 | oveq1d | |
30 | 29 | eqeq2d | |
31 | 30 | adantl | |
32 | 2nn0 | |
|
33 | 32 | a1i | |
34 | eluzge2nn0 | |
|
35 | 34 33 | nn0addcld | |
36 | 33 35 | nn0expcld | |
37 | 36 | nn0cnd | |
38 | 37 | mul02d | |
39 | 38 | oveq1d | |
40 | 0p1e1 | |
|
41 | 39 40 | eqtr2di | |
42 | 27 31 41 | rspcedvd | |
43 | 42 | adantr | |
44 | simpl | |
|
45 | 44 | adantl | |
46 | simpl | |
|
47 | simprr | |
|
48 | nnssnn0 | |
|
49 | fmtnoprmfac2 | |
|
50 | ssrexv | |
|
51 | 48 49 50 | mpsyl | |
52 | 45 46 47 51 | syl3anc | |
53 | 52 | ex | |
54 | fmtnofac2lem | |
|
55 | 5 10 15 20 25 43 53 54 | prmind | |
56 | 55 | expd | |
57 | 56 | 3imp21 | |