Metamath Proof Explorer


Theorem fmtnofac2

Description: Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 : Let F_n be a Fermat number. Let m be divisor of F_n. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021)

Ref Expression
Assertion fmtnofac2 N2MMFermatNoNk0M=k2N+2+1

Proof

Step Hyp Ref Expression
1 breq1 x=1xFermatNoN1FermatNoN
2 1 anbi2d x=1N2xFermatNoNN21FermatNoN
3 eqeq1 x=1x=k2N+2+11=k2N+2+1
4 3 rexbidv x=1k0x=k2N+2+1k01=k2N+2+1
5 2 4 imbi12d x=1N2xFermatNoNk0x=k2N+2+1N21FermatNoNk01=k2N+2+1
6 breq1 x=yxFermatNoNyFermatNoN
7 6 anbi2d x=yN2xFermatNoNN2yFermatNoN
8 eqeq1 x=yx=k2N+2+1y=k2N+2+1
9 8 rexbidv x=yk0x=k2N+2+1k0y=k2N+2+1
10 7 9 imbi12d x=yN2xFermatNoNk0x=k2N+2+1N2yFermatNoNk0y=k2N+2+1
11 breq1 x=zxFermatNoNzFermatNoN
12 11 anbi2d x=zN2xFermatNoNN2zFermatNoN
13 eqeq1 x=zx=k2N+2+1z=k2N+2+1
14 13 rexbidv x=zk0x=k2N+2+1k0z=k2N+2+1
15 12 14 imbi12d x=zN2xFermatNoNk0x=k2N+2+1N2zFermatNoNk0z=k2N+2+1
16 breq1 x=yzxFermatNoNyzFermatNoN
17 16 anbi2d x=yzN2xFermatNoNN2yzFermatNoN
18 eqeq1 x=yzx=k2N+2+1yz=k2N+2+1
19 18 rexbidv x=yzk0x=k2N+2+1k0yz=k2N+2+1
20 17 19 imbi12d x=yzN2xFermatNoNk0x=k2N+2+1N2yzFermatNoNk0yz=k2N+2+1
21 breq1 x=MxFermatNoNMFermatNoN
22 21 anbi2d x=MN2xFermatNoNN2MFermatNoN
23 eqeq1 x=Mx=k2N+2+1M=k2N+2+1
24 23 rexbidv x=Mk0x=k2N+2+1k0M=k2N+2+1
25 22 24 imbi12d x=MN2xFermatNoNk0x=k2N+2+1N2MFermatNoNk0M=k2N+2+1
26 0nn0 00
27 26 a1i N200
28 oveq1 k=0k2N+2=02N+2
29 28 oveq1d k=0k2N+2+1=02N+2+1
30 29 eqeq2d k=01=k2N+2+11=02N+2+1
31 30 adantl N2k=01=k2N+2+11=02N+2+1
32 2nn0 20
33 32 a1i N220
34 eluzge2nn0 N2N0
35 34 33 nn0addcld N2N+20
36 33 35 nn0expcld N22N+20
37 36 nn0cnd N22N+2
38 37 mul02d N202N+2=0
39 38 oveq1d N202N+2+1=0+1
40 0p1e1 0+1=1
41 39 40 eqtr2di N21=02N+2+1
42 27 31 41 rspcedvd N2k01=k2N+2+1
43 42 adantr N21FermatNoNk01=k2N+2+1
44 simpl N2xFermatNoNN2
45 44 adantl xN2xFermatNoNN2
46 simpl xN2xFermatNoNx
47 simprr xN2xFermatNoNxFermatNoN
48 nnssnn0 0
49 fmtnoprmfac2 N2xxFermatNoNkx=k2N+2+1
50 ssrexv 0kx=k2N+2+1k0x=k2N+2+1
51 48 49 50 mpsyl N2xxFermatNoNk0x=k2N+2+1
52 45 46 47 51 syl3anc xN2xFermatNoNk0x=k2N+2+1
53 52 ex xN2xFermatNoNk0x=k2N+2+1
54 fmtnofac2lem y2z2N2yFermatNoNk0y=k2N+2+1N2zFermatNoNk0z=k2N+2+1N2yzFermatNoNk0yz=k2N+2+1
55 5 10 15 20 25 43 53 54 prmind MN2MFermatNoNk0M=k2N+2+1
56 55 expd MN2MFermatNoNk0M=k2N+2+1
57 56 3imp21 N2MMFermatNoNk0M=k2N+2+1