Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( x = 1 -> ( x || ( FermatNo ` N ) <-> 1 || ( FermatNo ` N ) ) ) |
2 |
1
|
anbi2d |
|- ( x = 1 -> ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) <-> ( N e. ( ZZ>= ` 2 ) /\ 1 || ( FermatNo ` N ) ) ) ) |
3 |
|
eqeq1 |
|- ( x = 1 -> ( x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> 1 = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
4 |
3
|
rexbidv |
|- ( x = 1 -> ( E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> E. k e. NN0 1 = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
5 |
2 4
|
imbi12d |
|- ( x = 1 -> ( ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) -> E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) <-> ( ( N e. ( ZZ>= ` 2 ) /\ 1 || ( FermatNo ` N ) ) -> E. k e. NN0 1 = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
6 |
|
breq1 |
|- ( x = y -> ( x || ( FermatNo ` N ) <-> y || ( FermatNo ` N ) ) ) |
7 |
6
|
anbi2d |
|- ( x = y -> ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) <-> ( N e. ( ZZ>= ` 2 ) /\ y || ( FermatNo ` N ) ) ) ) |
8 |
|
eqeq1 |
|- ( x = y -> ( x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> y = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
9 |
8
|
rexbidv |
|- ( x = y -> ( E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> E. k e. NN0 y = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
10 |
7 9
|
imbi12d |
|- ( x = y -> ( ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) -> E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) <-> ( ( N e. ( ZZ>= ` 2 ) /\ y || ( FermatNo ` N ) ) -> E. k e. NN0 y = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
11 |
|
breq1 |
|- ( x = z -> ( x || ( FermatNo ` N ) <-> z || ( FermatNo ` N ) ) ) |
12 |
11
|
anbi2d |
|- ( x = z -> ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) <-> ( N e. ( ZZ>= ` 2 ) /\ z || ( FermatNo ` N ) ) ) ) |
13 |
|
eqeq1 |
|- ( x = z -> ( x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> z = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
14 |
13
|
rexbidv |
|- ( x = z -> ( E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> E. k e. NN0 z = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
15 |
12 14
|
imbi12d |
|- ( x = z -> ( ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) -> E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) <-> ( ( N e. ( ZZ>= ` 2 ) /\ z || ( FermatNo ` N ) ) -> E. k e. NN0 z = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
16 |
|
breq1 |
|- ( x = ( y x. z ) -> ( x || ( FermatNo ` N ) <-> ( y x. z ) || ( FermatNo ` N ) ) ) |
17 |
16
|
anbi2d |
|- ( x = ( y x. z ) -> ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) <-> ( N e. ( ZZ>= ` 2 ) /\ ( y x. z ) || ( FermatNo ` N ) ) ) ) |
18 |
|
eqeq1 |
|- ( x = ( y x. z ) -> ( x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> ( y x. z ) = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
19 |
18
|
rexbidv |
|- ( x = ( y x. z ) -> ( E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> E. k e. NN0 ( y x. z ) = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
20 |
17 19
|
imbi12d |
|- ( x = ( y x. z ) -> ( ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) -> E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) <-> ( ( N e. ( ZZ>= ` 2 ) /\ ( y x. z ) || ( FermatNo ` N ) ) -> E. k e. NN0 ( y x. z ) = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
21 |
|
breq1 |
|- ( x = M -> ( x || ( FermatNo ` N ) <-> M || ( FermatNo ` N ) ) ) |
22 |
21
|
anbi2d |
|- ( x = M -> ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) <-> ( N e. ( ZZ>= ` 2 ) /\ M || ( FermatNo ` N ) ) ) ) |
23 |
|
eqeq1 |
|- ( x = M -> ( x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> M = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
24 |
23
|
rexbidv |
|- ( x = M -> ( E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> E. k e. NN0 M = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
25 |
22 24
|
imbi12d |
|- ( x = M -> ( ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) -> E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) <-> ( ( N e. ( ZZ>= ` 2 ) /\ M || ( FermatNo ` N ) ) -> E. k e. NN0 M = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
26 |
|
0nn0 |
|- 0 e. NN0 |
27 |
26
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 0 e. NN0 ) |
28 |
|
oveq1 |
|- ( k = 0 -> ( k x. ( 2 ^ ( N + 2 ) ) ) = ( 0 x. ( 2 ^ ( N + 2 ) ) ) ) |
29 |
28
|
oveq1d |
|- ( k = 0 -> ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) = ( ( 0 x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |
30 |
29
|
eqeq2d |
|- ( k = 0 -> ( 1 = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> 1 = ( ( 0 x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
31 |
30
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ k = 0 ) -> ( 1 = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) <-> 1 = ( ( 0 x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
32 |
|
2nn0 |
|- 2 e. NN0 |
33 |
32
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. NN0 ) |
34 |
|
eluzge2nn0 |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) |
35 |
34 33
|
nn0addcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( N + 2 ) e. NN0 ) |
36 |
33 35
|
nn0expcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 2 ) ) e. NN0 ) |
37 |
36
|
nn0cnd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 2 ) ) e. CC ) |
38 |
37
|
mul02d |
|- ( N e. ( ZZ>= ` 2 ) -> ( 0 x. ( 2 ^ ( N + 2 ) ) ) = 0 ) |
39 |
38
|
oveq1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 0 x. ( 2 ^ ( N + 2 ) ) ) + 1 ) = ( 0 + 1 ) ) |
40 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
41 |
39 40
|
eqtr2di |
|- ( N e. ( ZZ>= ` 2 ) -> 1 = ( ( 0 x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |
42 |
27 31 41
|
rspcedvd |
|- ( N e. ( ZZ>= ` 2 ) -> E. k e. NN0 1 = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |
43 |
42
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ 1 || ( FermatNo ` N ) ) -> E. k e. NN0 1 = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |
44 |
|
simpl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) -> N e. ( ZZ>= ` 2 ) ) |
45 |
44
|
adantl |
|- ( ( x e. Prime /\ ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) ) -> N e. ( ZZ>= ` 2 ) ) |
46 |
|
simpl |
|- ( ( x e. Prime /\ ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) ) -> x e. Prime ) |
47 |
|
simprr |
|- ( ( x e. Prime /\ ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) ) -> x || ( FermatNo ` N ) ) |
48 |
|
nnssnn0 |
|- NN C_ NN0 |
49 |
|
fmtnoprmfac2 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ x e. Prime /\ x || ( FermatNo ` N ) ) -> E. k e. NN x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |
50 |
|
ssrexv |
|- ( NN C_ NN0 -> ( E. k e. NN x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) -> E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
51 |
48 49 50
|
mpsyl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ x e. Prime /\ x || ( FermatNo ` N ) ) -> E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |
52 |
45 46 47 51
|
syl3anc |
|- ( ( x e. Prime /\ ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) ) -> E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |
53 |
52
|
ex |
|- ( x e. Prime -> ( ( N e. ( ZZ>= ` 2 ) /\ x || ( FermatNo ` N ) ) -> E. k e. NN0 x = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
54 |
|
fmtnofac2lem |
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ( ( N e. ( ZZ>= ` 2 ) /\ y || ( FermatNo ` N ) ) -> E. k e. NN0 y = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) /\ ( ( N e. ( ZZ>= ` 2 ) /\ z || ( FermatNo ` N ) ) -> E. k e. NN0 z = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) -> ( ( N e. ( ZZ>= ` 2 ) /\ ( y x. z ) || ( FermatNo ` N ) ) -> E. k e. NN0 ( y x. z ) = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
55 |
5 10 15 20 25 43 53 54
|
prmind |
|- ( M e. NN -> ( ( N e. ( ZZ>= ` 2 ) /\ M || ( FermatNo ` N ) ) -> E. k e. NN0 M = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
56 |
55
|
expd |
|- ( M e. NN -> ( N e. ( ZZ>= ` 2 ) -> ( M || ( FermatNo ` N ) -> E. k e. NN0 M = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
57 |
56
|
3imp21 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M e. NN /\ M || ( FermatNo ` N ) ) -> E. k e. NN0 M = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |