| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|- ( P = 2 -> ( P || ( FermatNo ` N ) <-> 2 || ( FermatNo ` N ) ) ) |
| 2 |
1
|
adantr |
|- ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> ( P || ( FermatNo ` N ) <-> 2 || ( FermatNo ` N ) ) ) |
| 3 |
|
eluzge2nn0 |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) |
| 4 |
|
fmtnoodd |
|- ( N e. NN0 -> -. 2 || ( FermatNo ` N ) ) |
| 5 |
3 4
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> -. 2 || ( FermatNo ` N ) ) |
| 6 |
5
|
adantl |
|- ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> -. 2 || ( FermatNo ` N ) ) |
| 7 |
6
|
pm2.21d |
|- ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> ( 2 || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 8 |
2 7
|
sylbid |
|- ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> ( P || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 9 |
8
|
a1d |
|- ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> ( P e. Prime -> ( P || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
| 10 |
9
|
ex |
|- ( P = 2 -> ( N e. ( ZZ>= ` 2 ) -> ( P e. Prime -> ( P || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) ) |
| 11 |
10
|
3impd |
|- ( P = 2 -> ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 12 |
|
simpr1 |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> N e. ( ZZ>= ` 2 ) ) |
| 13 |
|
neqne |
|- ( -. P = 2 -> P =/= 2 ) |
| 14 |
13
|
anim2i |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( P e. Prime /\ P =/= 2 ) ) |
| 15 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
| 16 |
14 15
|
sylibr |
|- ( ( P e. Prime /\ -. P = 2 ) -> P e. ( Prime \ { 2 } ) ) |
| 17 |
16
|
ex |
|- ( P e. Prime -> ( -. P = 2 -> P e. ( Prime \ { 2 } ) ) ) |
| 18 |
17
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> ( -. P = 2 -> P e. ( Prime \ { 2 } ) ) ) |
| 19 |
18
|
impcom |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> P e. ( Prime \ { 2 } ) ) |
| 20 |
|
simpr3 |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> P || ( FermatNo ` N ) ) |
| 21 |
|
fmtnoprmfac2lem1 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 ) |
| 22 |
12 19 20 21
|
syl3anc |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 ) |
| 23 |
|
simpl |
|- ( ( P e. Prime /\ -. P = 2 ) -> P e. Prime ) |
| 24 |
|
2nn |
|- 2 e. NN |
| 25 |
24
|
a1i |
|- ( ( P e. Prime /\ -. P = 2 ) -> 2 e. NN ) |
| 26 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
| 27 |
16 26
|
syl |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( ( P - 1 ) / 2 ) e. NN ) |
| 28 |
27
|
nnnn0d |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 29 |
25 28
|
nnexpcld |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( 2 ^ ( ( P - 1 ) / 2 ) ) e. NN ) |
| 30 |
29
|
nnzd |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 31 |
23 30
|
jca |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) ) |
| 32 |
31
|
ex |
|- ( P e. Prime -> ( -. P = 2 -> ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) ) ) |
| 33 |
32
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> ( -. P = 2 -> ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) ) ) |
| 34 |
33
|
impcom |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) ) |
| 35 |
|
modprm1div |
|- ( ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 <-> P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
| 36 |
34 35
|
syl |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 <-> P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
| 37 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 38 |
37
|
adantr |
|- ( ( P e. Prime /\ -. P = 2 ) -> P e. NN ) |
| 39 |
|
2z |
|- 2 e. ZZ |
| 40 |
39
|
a1i |
|- ( ( P e. Prime /\ -. P = 2 ) -> 2 e. ZZ ) |
| 41 |
13
|
necomd |
|- ( -. P = 2 -> 2 =/= P ) |
| 42 |
41
|
adantl |
|- ( ( P e. Prime /\ -. P = 2 ) -> 2 =/= P ) |
| 43 |
|
2prm |
|- 2 e. Prime |
| 44 |
43
|
a1i |
|- ( -. P = 2 -> 2 e. Prime ) |
| 45 |
44
|
anim2i |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( P e. Prime /\ 2 e. Prime ) ) |
| 46 |
45
|
ancomd |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( 2 e. Prime /\ P e. Prime ) ) |
| 47 |
|
prmrp |
|- ( ( 2 e. Prime /\ P e. Prime ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) |
| 48 |
46 47
|
syl |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) |
| 49 |
42 48
|
mpbird |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( 2 gcd P ) = 1 ) |
| 50 |
38 40 49
|
3jca |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) ) |
| 51 |
50 28
|
jca |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) ) |
| 52 |
51
|
ex |
|- ( P e. Prime -> ( -. P = 2 -> ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) ) ) |
| 53 |
52
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> ( -. P = 2 -> ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) ) ) |
| 54 |
53
|
impcom |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) ) |
| 55 |
|
odzdvds |
|- ( ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) <-> ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) ) ) |
| 56 |
54 55
|
syl |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) <-> ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) ) ) |
| 57 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 58 |
57
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> N e. NN ) |
| 59 |
58
|
adantl |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> N e. NN ) |
| 60 |
|
fmtnoprmfac1lem |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) |
| 61 |
59 19 20 60
|
syl3anc |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) |
| 62 |
|
breq1 |
|- ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) <-> ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) ) ) |
| 63 |
62
|
adantl |
|- ( ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) <-> ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) ) ) |
| 64 |
24
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. NN ) |
| 65 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
| 66 |
57 65
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. NN ) |
| 67 |
66
|
nnnn0d |
|- ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. NN0 ) |
| 68 |
64 67
|
nnexpcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 1 ) ) e. NN ) |
| 69 |
|
nndivides |
|- ( ( ( 2 ^ ( N + 1 ) ) e. NN /\ ( ( P - 1 ) / 2 ) e. NN ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) <-> E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) ) ) |
| 70 |
68 27 69
|
syl2an |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( P e. Prime /\ -. P = 2 ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) <-> E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) ) ) |
| 71 |
|
eqcom |
|- ( ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) <-> ( ( P - 1 ) / 2 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) ) |
| 72 |
71
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) <-> ( ( P - 1 ) / 2 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) ) ) |
| 73 |
37
|
nncnd |
|- ( P e. Prime -> P e. CC ) |
| 74 |
|
peano2cnm |
|- ( P e. CC -> ( P - 1 ) e. CC ) |
| 75 |
73 74
|
syl |
|- ( P e. Prime -> ( P - 1 ) e. CC ) |
| 76 |
75
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( P - 1 ) e. CC ) |
| 77 |
76
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( P - 1 ) e. CC ) |
| 78 |
|
simpr |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> k e. NN ) |
| 79 |
68
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( 2 ^ ( N + 1 ) ) e. NN ) |
| 80 |
78 79
|
nnmulcld |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( k x. ( 2 ^ ( N + 1 ) ) ) e. NN ) |
| 81 |
80
|
nncnd |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( k x. ( 2 ^ ( N + 1 ) ) ) e. CC ) |
| 82 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 83 |
82
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 84 |
|
divmul3 |
|- ( ( ( P - 1 ) e. CC /\ ( k x. ( 2 ^ ( N + 1 ) ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( P - 1 ) / 2 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) <-> ( P - 1 ) = ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) ) ) |
| 85 |
77 81 83 84
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( ( P - 1 ) / 2 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) <-> ( P - 1 ) = ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) ) ) |
| 86 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 87 |
86
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> k e. CC ) |
| 88 |
68
|
nncnd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 1 ) ) e. CC ) |
| 89 |
88
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( 2 ^ ( N + 1 ) ) e. CC ) |
| 90 |
|
2cnd |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> 2 e. CC ) |
| 91 |
87 89 90
|
mulassd |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) = ( k x. ( ( 2 ^ ( N + 1 ) ) x. 2 ) ) ) |
| 92 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
| 93 |
65
|
nnnn0d |
|- ( N e. NN -> ( N + 1 ) e. NN0 ) |
| 94 |
92 93
|
expp1d |
|- ( N e. NN -> ( 2 ^ ( ( N + 1 ) + 1 ) ) = ( ( 2 ^ ( N + 1 ) ) x. 2 ) ) |
| 95 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 96 |
|
add1p1 |
|- ( N e. CC -> ( ( N + 1 ) + 1 ) = ( N + 2 ) ) |
| 97 |
95 96
|
syl |
|- ( N e. NN -> ( ( N + 1 ) + 1 ) = ( N + 2 ) ) |
| 98 |
97
|
oveq2d |
|- ( N e. NN -> ( 2 ^ ( ( N + 1 ) + 1 ) ) = ( 2 ^ ( N + 2 ) ) ) |
| 99 |
94 98
|
eqtr3d |
|- ( N e. NN -> ( ( 2 ^ ( N + 1 ) ) x. 2 ) = ( 2 ^ ( N + 2 ) ) ) |
| 100 |
57 99
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( N + 1 ) ) x. 2 ) = ( 2 ^ ( N + 2 ) ) ) |
| 101 |
100
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( 2 ^ ( N + 1 ) ) x. 2 ) = ( 2 ^ ( N + 2 ) ) ) |
| 102 |
101
|
oveq2d |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( k x. ( ( 2 ^ ( N + 1 ) ) x. 2 ) ) = ( k x. ( 2 ^ ( N + 2 ) ) ) ) |
| 103 |
91 102
|
eqtrd |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) = ( k x. ( 2 ^ ( N + 2 ) ) ) ) |
| 104 |
103
|
eqeq2d |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( P - 1 ) = ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) <-> ( P - 1 ) = ( k x. ( 2 ^ ( N + 2 ) ) ) ) ) |
| 105 |
73
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> P e. CC ) |
| 106 |
105
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> P e. CC ) |
| 107 |
|
1cnd |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> 1 e. CC ) |
| 108 |
|
id |
|- ( N e. NN -> N e. NN ) |
| 109 |
24
|
a1i |
|- ( N e. NN -> 2 e. NN ) |
| 110 |
108 109
|
nnaddcld |
|- ( N e. NN -> ( N + 2 ) e. NN ) |
| 111 |
110
|
nnnn0d |
|- ( N e. NN -> ( N + 2 ) e. NN0 ) |
| 112 |
57 111
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N + 2 ) e. NN0 ) |
| 113 |
64 112
|
nnexpcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 2 ) ) e. NN ) |
| 114 |
113
|
nncnd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 2 ) ) e. CC ) |
| 115 |
114
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( 2 ^ ( N + 2 ) ) e. CC ) |
| 116 |
87 115
|
mulcld |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( k x. ( 2 ^ ( N + 2 ) ) ) e. CC ) |
| 117 |
106 107 116
|
subadd2d |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( P - 1 ) = ( k x. ( 2 ^ ( N + 2 ) ) ) <-> ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) = P ) ) |
| 118 |
|
eqcom |
|- ( ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) = P <-> P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |
| 119 |
118
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) = P <-> P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 120 |
104 117 119
|
3bitrd |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( P - 1 ) = ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) <-> P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 121 |
72 85 120
|
3bitrd |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) <-> P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 122 |
121
|
rexbidva |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) <-> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 123 |
122
|
biimpd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 124 |
123
|
adantrr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( P e. Prime /\ -. P = 2 ) ) -> ( E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 125 |
70 124
|
sylbid |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( P e. Prime /\ -. P = 2 ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 126 |
125
|
expr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( -. P = 2 -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
| 127 |
126
|
3adant3 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> ( -. P = 2 -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
| 128 |
127
|
impcom |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 129 |
128
|
adantr |
|- ( ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 130 |
63 129
|
sylbid |
|- ( ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 131 |
130
|
ex |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) |
| 132 |
61 131
|
mpd |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 133 |
56 132
|
sylbid |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 134 |
36 133
|
sylbid |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 135 |
22 134
|
mpd |
|- ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |
| 136 |
135
|
ex |
|- ( -. P = 2 -> ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) |
| 137 |
11 136
|
pm2.61i |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |