| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 |  |-  ( P = 2 -> ( P || ( FermatNo ` N ) <-> 2 || ( FermatNo ` N ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> ( P || ( FermatNo ` N ) <-> 2 || ( FermatNo ` N ) ) ) | 
						
							| 3 |  | eluzge2nn0 |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) | 
						
							| 4 |  | fmtnoodd |  |-  ( N e. NN0 -> -. 2 || ( FermatNo ` N ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> -. 2 || ( FermatNo ` N ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> -. 2 || ( FermatNo ` N ) ) | 
						
							| 7 | 6 | pm2.21d |  |-  ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> ( 2 || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 8 | 2 7 | sylbid |  |-  ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> ( P || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 9 | 8 | a1d |  |-  ( ( P = 2 /\ N e. ( ZZ>= ` 2 ) ) -> ( P e. Prime -> ( P || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) | 
						
							| 10 | 9 | ex |  |-  ( P = 2 -> ( N e. ( ZZ>= ` 2 ) -> ( P e. Prime -> ( P || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) ) | 
						
							| 11 | 10 | 3impd |  |-  ( P = 2 -> ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 12 |  | simpr1 |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 13 |  | neqne |  |-  ( -. P = 2 -> P =/= 2 ) | 
						
							| 14 | 13 | anim2i |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 15 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( ( P e. Prime /\ -. P = 2 ) -> P e. ( Prime \ { 2 } ) ) | 
						
							| 17 | 16 | ex |  |-  ( P e. Prime -> ( -. P = 2 -> P e. ( Prime \ { 2 } ) ) ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> ( -. P = 2 -> P e. ( Prime \ { 2 } ) ) ) | 
						
							| 19 | 18 | impcom |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> P e. ( Prime \ { 2 } ) ) | 
						
							| 20 |  | simpr3 |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> P || ( FermatNo ` N ) ) | 
						
							| 21 |  | fmtnoprmfac2lem1 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 ) | 
						
							| 22 | 12 19 20 21 | syl3anc |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 ) | 
						
							| 23 |  | simpl |  |-  ( ( P e. Prime /\ -. P = 2 ) -> P e. Prime ) | 
						
							| 24 |  | 2nn |  |-  2 e. NN | 
						
							| 25 | 24 | a1i |  |-  ( ( P e. Prime /\ -. P = 2 ) -> 2 e. NN ) | 
						
							| 26 |  | oddprm |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 27 | 16 26 | syl |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 28 | 27 | nnnn0d |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( ( P - 1 ) / 2 ) e. NN0 ) | 
						
							| 29 | 25 28 | nnexpcld |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( 2 ^ ( ( P - 1 ) / 2 ) ) e. NN ) | 
						
							| 30 | 29 | nnzd |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 31 | 23 30 | jca |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) ) | 
						
							| 32 | 31 | ex |  |-  ( P e. Prime -> ( -. P = 2 -> ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) ) ) | 
						
							| 33 | 32 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> ( -. P = 2 -> ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) ) ) | 
						
							| 34 | 33 | impcom |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) ) | 
						
							| 35 |  | modprm1div |  |-  ( ( P e. Prime /\ ( 2 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 <-> P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 <-> P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) | 
						
							| 37 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 38 | 37 | adantr |  |-  ( ( P e. Prime /\ -. P = 2 ) -> P e. NN ) | 
						
							| 39 |  | 2z |  |-  2 e. ZZ | 
						
							| 40 | 39 | a1i |  |-  ( ( P e. Prime /\ -. P = 2 ) -> 2 e. ZZ ) | 
						
							| 41 | 13 | necomd |  |-  ( -. P = 2 -> 2 =/= P ) | 
						
							| 42 | 41 | adantl |  |-  ( ( P e. Prime /\ -. P = 2 ) -> 2 =/= P ) | 
						
							| 43 |  | 2prm |  |-  2 e. Prime | 
						
							| 44 | 43 | a1i |  |-  ( -. P = 2 -> 2 e. Prime ) | 
						
							| 45 | 44 | anim2i |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( P e. Prime /\ 2 e. Prime ) ) | 
						
							| 46 | 45 | ancomd |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( 2 e. Prime /\ P e. Prime ) ) | 
						
							| 47 |  | prmrp |  |-  ( ( 2 e. Prime /\ P e. Prime ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) | 
						
							| 49 | 42 48 | mpbird |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( 2 gcd P ) = 1 ) | 
						
							| 50 | 38 40 49 | 3jca |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) ) | 
						
							| 51 | 50 28 | jca |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) ) | 
						
							| 52 | 51 | ex |  |-  ( P e. Prime -> ( -. P = 2 -> ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) ) ) | 
						
							| 53 | 52 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> ( -. P = 2 -> ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) ) ) | 
						
							| 54 | 53 | impcom |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) ) | 
						
							| 55 |  | odzdvds |  |-  ( ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) <-> ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) ) ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) <-> ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) ) ) | 
						
							| 57 |  | eluz2nn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN ) | 
						
							| 58 | 57 | 3ad2ant1 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> N e. NN ) | 
						
							| 59 | 58 | adantl |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> N e. NN ) | 
						
							| 60 |  | fmtnoprmfac1lem |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 61 | 59 19 20 60 | syl3anc |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 62 |  | breq1 |  |-  ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) <-> ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) <-> ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) ) ) | 
						
							| 64 | 24 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. NN ) | 
						
							| 65 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 66 | 57 65 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. NN ) | 
						
							| 67 | 66 | nnnn0d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. NN0 ) | 
						
							| 68 | 64 67 | nnexpcld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 1 ) ) e. NN ) | 
						
							| 69 |  | nndivides |  |-  ( ( ( 2 ^ ( N + 1 ) ) e. NN /\ ( ( P - 1 ) / 2 ) e. NN ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) <-> E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) ) ) | 
						
							| 70 | 68 27 69 | syl2an |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( P e. Prime /\ -. P = 2 ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) <-> E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) ) ) | 
						
							| 71 |  | eqcom |  |-  ( ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) <-> ( ( P - 1 ) / 2 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 72 | 71 | a1i |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) <-> ( ( P - 1 ) / 2 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 73 | 37 | nncnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 74 |  | peano2cnm |  |-  ( P e. CC -> ( P - 1 ) e. CC ) | 
						
							| 75 | 73 74 | syl |  |-  ( P e. Prime -> ( P - 1 ) e. CC ) | 
						
							| 76 | 75 | adantl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( P - 1 ) e. CC ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( P - 1 ) e. CC ) | 
						
							| 78 |  | simpr |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> k e. NN ) | 
						
							| 79 | 68 | ad2antrr |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( 2 ^ ( N + 1 ) ) e. NN ) | 
						
							| 80 | 78 79 | nnmulcld |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( k x. ( 2 ^ ( N + 1 ) ) ) e. NN ) | 
						
							| 81 | 80 | nncnd |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( k x. ( 2 ^ ( N + 1 ) ) ) e. CC ) | 
						
							| 82 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 83 | 82 | a1i |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 84 |  | divmul3 |  |-  ( ( ( P - 1 ) e. CC /\ ( k x. ( 2 ^ ( N + 1 ) ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( P - 1 ) / 2 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) <-> ( P - 1 ) = ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) ) ) | 
						
							| 85 | 77 81 83 84 | syl3anc |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( ( P - 1 ) / 2 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) <-> ( P - 1 ) = ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) ) ) | 
						
							| 86 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 87 | 86 | adantl |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> k e. CC ) | 
						
							| 88 | 68 | nncnd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 1 ) ) e. CC ) | 
						
							| 89 | 88 | ad2antrr |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( 2 ^ ( N + 1 ) ) e. CC ) | 
						
							| 90 |  | 2cnd |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> 2 e. CC ) | 
						
							| 91 | 87 89 90 | mulassd |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) = ( k x. ( ( 2 ^ ( N + 1 ) ) x. 2 ) ) ) | 
						
							| 92 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 93 | 65 | nnnn0d |  |-  ( N e. NN -> ( N + 1 ) e. NN0 ) | 
						
							| 94 | 92 93 | expp1d |  |-  ( N e. NN -> ( 2 ^ ( ( N + 1 ) + 1 ) ) = ( ( 2 ^ ( N + 1 ) ) x. 2 ) ) | 
						
							| 95 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 96 |  | add1p1 |  |-  ( N e. CC -> ( ( N + 1 ) + 1 ) = ( N + 2 ) ) | 
						
							| 97 | 95 96 | syl |  |-  ( N e. NN -> ( ( N + 1 ) + 1 ) = ( N + 2 ) ) | 
						
							| 98 | 97 | oveq2d |  |-  ( N e. NN -> ( 2 ^ ( ( N + 1 ) + 1 ) ) = ( 2 ^ ( N + 2 ) ) ) | 
						
							| 99 | 94 98 | eqtr3d |  |-  ( N e. NN -> ( ( 2 ^ ( N + 1 ) ) x. 2 ) = ( 2 ^ ( N + 2 ) ) ) | 
						
							| 100 | 57 99 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( N + 1 ) ) x. 2 ) = ( 2 ^ ( N + 2 ) ) ) | 
						
							| 101 | 100 | ad2antrr |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( 2 ^ ( N + 1 ) ) x. 2 ) = ( 2 ^ ( N + 2 ) ) ) | 
						
							| 102 | 101 | oveq2d |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( k x. ( ( 2 ^ ( N + 1 ) ) x. 2 ) ) = ( k x. ( 2 ^ ( N + 2 ) ) ) ) | 
						
							| 103 | 91 102 | eqtrd |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) = ( k x. ( 2 ^ ( N + 2 ) ) ) ) | 
						
							| 104 | 103 | eqeq2d |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( P - 1 ) = ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) <-> ( P - 1 ) = ( k x. ( 2 ^ ( N + 2 ) ) ) ) ) | 
						
							| 105 | 73 | adantl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> P e. CC ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> P e. CC ) | 
						
							| 107 |  | 1cnd |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> 1 e. CC ) | 
						
							| 108 |  | id |  |-  ( N e. NN -> N e. NN ) | 
						
							| 109 | 24 | a1i |  |-  ( N e. NN -> 2 e. NN ) | 
						
							| 110 | 108 109 | nnaddcld |  |-  ( N e. NN -> ( N + 2 ) e. NN ) | 
						
							| 111 | 110 | nnnn0d |  |-  ( N e. NN -> ( N + 2 ) e. NN0 ) | 
						
							| 112 | 57 111 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N + 2 ) e. NN0 ) | 
						
							| 113 | 64 112 | nnexpcld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 2 ) ) e. NN ) | 
						
							| 114 | 113 | nncnd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 2 ) ) e. CC ) | 
						
							| 115 | 114 | ad2antrr |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( 2 ^ ( N + 2 ) ) e. CC ) | 
						
							| 116 | 87 115 | mulcld |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( k x. ( 2 ^ ( N + 2 ) ) ) e. CC ) | 
						
							| 117 | 106 107 116 | subadd2d |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( P - 1 ) = ( k x. ( 2 ^ ( N + 2 ) ) ) <-> ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) = P ) ) | 
						
							| 118 |  | eqcom |  |-  ( ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) = P <-> P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) | 
						
							| 119 | 118 | a1i |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) = P <-> P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 120 | 104 117 119 | 3bitrd |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( P - 1 ) = ( ( k x. ( 2 ^ ( N + 1 ) ) ) x. 2 ) <-> P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 121 | 72 85 120 | 3bitrd |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) <-> P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 122 | 121 | rexbidva |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) <-> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 123 | 122 | biimpd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 124 | 123 | adantrr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( P e. Prime /\ -. P = 2 ) ) -> ( E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 125 | 70 124 | sylbid |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( P e. Prime /\ -. P = 2 ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 126 | 125 | expr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( -. P = 2 -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) | 
						
							| 127 | 126 | 3adant3 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> ( -. P = 2 -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) | 
						
							| 128 | 127 | impcom |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 130 | 63 129 | sylbid |  |-  ( ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 131 | 130 | ex |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) ) | 
						
							| 132 | 61 131 | mpd |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( ( P - 1 ) / 2 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 133 | 56 132 | sylbid |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( P || ( ( 2 ^ ( ( P - 1 ) / 2 ) ) - 1 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 134 | 36 133 | sylbid |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 135 | 22 134 | mpd |  |-  ( ( -. P = 2 /\ ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) | 
						
							| 136 | 135 | ex |  |-  ( -. P = 2 -> ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) ) | 
						
							| 137 | 11 136 | pm2.61i |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 2 ) ) ) + 1 ) ) |