| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 2 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 3 | 1 2 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. NN ) | 
						
							| 4 | 3 | ad2antlr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ P || ( FermatNo ` N ) ) -> P e. NN ) | 
						
							| 5 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 6 |  | fmtno |  |-  ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( N e. NN -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) | 
						
							| 8 | 7 | breq2d |  |-  ( N e. NN -> ( P || ( FermatNo ` N ) <-> P || ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( FermatNo ` N ) <-> P || ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ P || ( FermatNo ` N ) ) -> P || ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) | 
						
							| 11 |  | dvdsmod0 |  |-  ( ( P e. NN /\ P || ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) | 
						
							| 12 | 4 10 11 | syl2anc |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ P || ( FermatNo ` N ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) | 
						
							| 13 | 12 | ex |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( FermatNo ` N ) -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) ) | 
						
							| 14 |  | 2nn |  |-  2 e. NN | 
						
							| 15 | 14 | a1i |  |-  ( N e. NN -> 2 e. NN ) | 
						
							| 16 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 17 | 16 | a1i |  |-  ( N e. NN -> 2 e. NN0 ) | 
						
							| 18 | 17 5 | nn0expcld |  |-  ( N e. NN -> ( 2 ^ N ) e. NN0 ) | 
						
							| 19 | 15 18 | nnexpcld |  |-  ( N e. NN -> ( 2 ^ ( 2 ^ N ) ) e. NN ) | 
						
							| 20 | 19 | nnzd |  |-  ( N e. NN -> ( 2 ^ ( 2 ^ N ) ) e. ZZ ) | 
						
							| 21 | 20 | adantr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ ( 2 ^ N ) ) e. ZZ ) | 
						
							| 22 |  | 1zzd |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> 1 e. ZZ ) | 
						
							| 23 | 3 | adantl |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> P e. NN ) | 
						
							| 24 |  | summodnegmod |  |-  ( ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ 1 e. ZZ /\ P e. NN ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 <-> ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) ) | 
						
							| 25 | 21 22 23 24 | syl3anc |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 <-> ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) ) | 
						
							| 26 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 27 | 21 26 | jctir |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ -u 1 e. ZZ ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ -u 1 e. ZZ ) ) | 
						
							| 29 | 2 | nnrpd |  |-  ( P e. Prime -> P e. RR+ ) | 
						
							| 30 | 1 29 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. RR+ ) | 
						
							| 31 | 17 30 | anim12i |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 e. NN0 /\ P e. RR+ ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( 2 e. NN0 /\ P e. RR+ ) ) | 
						
							| 33 |  | simpr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) | 
						
							| 34 |  | modexp |  |-  ( ( ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ -u 1 e. ZZ ) /\ ( 2 e. NN0 /\ P e. RR+ ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) ) | 
						
							| 35 | 28 32 33 34 | syl3anc |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) ) | 
						
							| 36 | 35 | ex |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) -> ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) ) ) | 
						
							| 37 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 38 | 37 18 17 | 3jca |  |-  ( N e. NN -> ( 2 e. CC /\ ( 2 ^ N ) e. NN0 /\ 2 e. NN0 ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 e. CC /\ ( 2 ^ N ) e. NN0 /\ 2 e. NN0 ) ) | 
						
							| 40 |  | expmul |  |-  ( ( 2 e. CC /\ ( 2 ^ N ) e. NN0 /\ 2 e. NN0 ) -> ( 2 ^ ( ( 2 ^ N ) x. 2 ) ) = ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ ( ( 2 ^ N ) x. 2 ) ) = ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) ) | 
						
							| 42 |  | 2cnd |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> 2 e. CC ) | 
						
							| 43 | 5 | adantr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> N e. NN0 ) | 
						
							| 44 | 42 43 | expp1d |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ ( N + 1 ) ) = ( ( 2 ^ N ) x. 2 ) ) | 
						
							| 45 | 44 | eqcomd |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 ^ N ) x. 2 ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ ( ( 2 ^ N ) x. 2 ) ) = ( 2 ^ ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 47 | 41 46 | eqtr3d |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) = ( 2 ^ ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) ) | 
						
							| 49 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 50 | 49 | a1i |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( -u 1 ^ 2 ) = 1 ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( -u 1 ^ 2 ) mod P ) = ( 1 mod P ) ) | 
						
							| 52 | 3 | nnred |  |-  ( P e. ( Prime \ { 2 } ) -> P e. RR ) | 
						
							| 53 |  | prmgt1 |  |-  ( P e. Prime -> 1 < P ) | 
						
							| 54 | 1 53 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> 1 < P ) | 
						
							| 55 |  | 1mod |  |-  ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) | 
						
							| 56 | 52 54 55 | syl2anc |  |-  ( P e. ( Prime \ { 2 } ) -> ( 1 mod P ) = 1 ) | 
						
							| 57 | 56 | adantl |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 1 mod P ) = 1 ) | 
						
							| 58 | 51 57 | eqtrd |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( -u 1 ^ 2 ) mod P ) = 1 ) | 
						
							| 59 | 48 58 | eqeq12d |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) <-> ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) ) | 
						
							| 60 |  | simpll |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) -> ( N e. NN /\ P e. ( Prime \ { 2 } ) ) ) | 
						
							| 61 | 20 | adantr |  |-  ( ( N e. NN /\ P e. Prime ) -> ( 2 ^ ( 2 ^ N ) ) e. ZZ ) | 
						
							| 62 |  | 1zzd |  |-  ( ( N e. NN /\ P e. Prime ) -> 1 e. ZZ ) | 
						
							| 63 | 2 | adantl |  |-  ( ( N e. NN /\ P e. Prime ) -> P e. NN ) | 
						
							| 64 | 61 62 63 | 3jca |  |-  ( ( N e. NN /\ P e. Prime ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ 1 e. ZZ /\ P e. NN ) ) | 
						
							| 65 | 1 64 | sylan2 |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ 1 e. ZZ /\ P e. NN ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ 1 e. ZZ /\ P e. NN ) ) | 
						
							| 67 | 66 24 | syl |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 <-> ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) ) | 
						
							| 68 |  | m1modnnsub1 |  |-  ( P e. NN -> ( -u 1 mod P ) = ( P - 1 ) ) | 
						
							| 69 | 23 68 | syl |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( -u 1 mod P ) = ( P - 1 ) ) | 
						
							| 70 |  | eldifsni |  |-  ( P e. ( Prime \ { 2 } ) -> P =/= 2 ) | 
						
							| 71 | 70 | adantl |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> P =/= 2 ) | 
						
							| 72 | 71 | necomd |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> 2 =/= P ) | 
						
							| 73 | 3 | nncnd |  |-  ( P e. ( Prime \ { 2 } ) -> P e. CC ) | 
						
							| 74 | 73 | adantl |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> P e. CC ) | 
						
							| 75 |  | 1cnd |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> 1 e. CC ) | 
						
							| 76 | 74 75 75 | subadd2d |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) = 1 <-> ( 1 + 1 ) = P ) ) | 
						
							| 77 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 78 | 77 | eqeq1i |  |-  ( ( 1 + 1 ) = P <-> 2 = P ) | 
						
							| 79 | 76 78 | bitrdi |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) = 1 <-> 2 = P ) ) | 
						
							| 80 | 79 | necon3bid |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) =/= 1 <-> 2 =/= P ) ) | 
						
							| 81 | 72 80 | mpbird |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P - 1 ) =/= 1 ) | 
						
							| 82 | 69 81 | eqnetrd |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( -u 1 mod P ) =/= 1 ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( -u 1 mod P ) =/= 1 ) | 
						
							| 84 | 83 | adantr |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( -u 1 mod P ) =/= 1 ) | 
						
							| 85 |  | eqeq1 |  |-  ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = 1 <-> ( -u 1 mod P ) = 1 ) ) | 
						
							| 86 | 85 | adantl |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = 1 <-> ( -u 1 mod P ) = 1 ) ) | 
						
							| 87 | 86 | necon3bid |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 <-> ( -u 1 mod P ) =/= 1 ) ) | 
						
							| 88 | 84 87 | mpbird |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 ) | 
						
							| 89 | 88 | ex |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 ) ) | 
						
							| 90 | 67 89 | sylbid |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 ) ) | 
						
							| 91 | 90 | imp |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 ) | 
						
							| 92 |  | simplr |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) -> ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) | 
						
							| 93 |  | odz2prm2pw |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 94 | 60 91 92 93 | syl12anc |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 95 | 94 | ex |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 96 | 95 | ex |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 97 | 59 96 | sylbid |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 98 | 36 97 | syld |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 99 | 25 98 | sylbid |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 100 | 99 | pm2.43d |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 101 | 13 100 | syld |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( FermatNo ` N ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 102 | 101 | 3impia |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) |