Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
2 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
3 |
1 2
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. NN ) |
4 |
3
|
ad2antlr |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ P || ( FermatNo ` N ) ) -> P e. NN ) |
5 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
6 |
|
fmtno |
|- ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
7 |
5 6
|
syl |
|- ( N e. NN -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
8 |
7
|
breq2d |
|- ( N e. NN -> ( P || ( FermatNo ` N ) <-> P || ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) |
9 |
8
|
adantr |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( FermatNo ` N ) <-> P || ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) |
10 |
9
|
biimpa |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ P || ( FermatNo ` N ) ) -> P || ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
11 |
|
dvdsmod0 |
|- ( ( P e. NN /\ P || ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) |
12 |
4 10 11
|
syl2anc |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ P || ( FermatNo ` N ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) |
13 |
12
|
ex |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( FermatNo ` N ) -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) ) |
14 |
|
2nn |
|- 2 e. NN |
15 |
14
|
a1i |
|- ( N e. NN -> 2 e. NN ) |
16 |
|
2nn0 |
|- 2 e. NN0 |
17 |
16
|
a1i |
|- ( N e. NN -> 2 e. NN0 ) |
18 |
17 5
|
nn0expcld |
|- ( N e. NN -> ( 2 ^ N ) e. NN0 ) |
19 |
15 18
|
nnexpcld |
|- ( N e. NN -> ( 2 ^ ( 2 ^ N ) ) e. NN ) |
20 |
19
|
nnzd |
|- ( N e. NN -> ( 2 ^ ( 2 ^ N ) ) e. ZZ ) |
21 |
20
|
adantr |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ ( 2 ^ N ) ) e. ZZ ) |
22 |
|
1zzd |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> 1 e. ZZ ) |
23 |
3
|
adantl |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> P e. NN ) |
24 |
|
summodnegmod |
|- ( ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ 1 e. ZZ /\ P e. NN ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 <-> ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) ) |
25 |
21 22 23 24
|
syl3anc |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 <-> ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) ) |
26 |
|
neg1z |
|- -u 1 e. ZZ |
27 |
21 26
|
jctir |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ -u 1 e. ZZ ) ) |
28 |
27
|
adantr |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ -u 1 e. ZZ ) ) |
29 |
2
|
nnrpd |
|- ( P e. Prime -> P e. RR+ ) |
30 |
1 29
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. RR+ ) |
31 |
17 30
|
anim12i |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 e. NN0 /\ P e. RR+ ) ) |
32 |
31
|
adantr |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( 2 e. NN0 /\ P e. RR+ ) ) |
33 |
|
simpr |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) |
34 |
|
modexp |
|- ( ( ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ -u 1 e. ZZ ) /\ ( 2 e. NN0 /\ P e. RR+ ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) ) |
35 |
28 32 33 34
|
syl3anc |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) ) |
36 |
35
|
ex |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) -> ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) ) ) |
37 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
38 |
37 18 17
|
3jca |
|- ( N e. NN -> ( 2 e. CC /\ ( 2 ^ N ) e. NN0 /\ 2 e. NN0 ) ) |
39 |
38
|
adantr |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 e. CC /\ ( 2 ^ N ) e. NN0 /\ 2 e. NN0 ) ) |
40 |
|
expmul |
|- ( ( 2 e. CC /\ ( 2 ^ N ) e. NN0 /\ 2 e. NN0 ) -> ( 2 ^ ( ( 2 ^ N ) x. 2 ) ) = ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) ) |
41 |
39 40
|
syl |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ ( ( 2 ^ N ) x. 2 ) ) = ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) ) |
42 |
|
2cnd |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> 2 e. CC ) |
43 |
5
|
adantr |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> N e. NN0 ) |
44 |
42 43
|
expp1d |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ ( N + 1 ) ) = ( ( 2 ^ N ) x. 2 ) ) |
45 |
44
|
eqcomd |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 ^ N ) x. 2 ) = ( 2 ^ ( N + 1 ) ) ) |
46 |
45
|
oveq2d |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ ( ( 2 ^ N ) x. 2 ) ) = ( 2 ^ ( 2 ^ ( N + 1 ) ) ) ) |
47 |
41 46
|
eqtr3d |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) = ( 2 ^ ( 2 ^ ( N + 1 ) ) ) ) |
48 |
47
|
oveq1d |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) ) |
49 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
50 |
49
|
a1i |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( -u 1 ^ 2 ) = 1 ) |
51 |
50
|
oveq1d |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( -u 1 ^ 2 ) mod P ) = ( 1 mod P ) ) |
52 |
3
|
nnred |
|- ( P e. ( Prime \ { 2 } ) -> P e. RR ) |
53 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
54 |
1 53
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> 1 < P ) |
55 |
|
1mod |
|- ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) |
56 |
52 54 55
|
syl2anc |
|- ( P e. ( Prime \ { 2 } ) -> ( 1 mod P ) = 1 ) |
57 |
56
|
adantl |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 1 mod P ) = 1 ) |
58 |
51 57
|
eqtrd |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( -u 1 ^ 2 ) mod P ) = 1 ) |
59 |
48 58
|
eqeq12d |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) <-> ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) ) |
60 |
|
simpll |
|- ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) -> ( N e. NN /\ P e. ( Prime \ { 2 } ) ) ) |
61 |
20
|
adantr |
|- ( ( N e. NN /\ P e. Prime ) -> ( 2 ^ ( 2 ^ N ) ) e. ZZ ) |
62 |
|
1zzd |
|- ( ( N e. NN /\ P e. Prime ) -> 1 e. ZZ ) |
63 |
2
|
adantl |
|- ( ( N e. NN /\ P e. Prime ) -> P e. NN ) |
64 |
61 62 63
|
3jca |
|- ( ( N e. NN /\ P e. Prime ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ 1 e. ZZ /\ P e. NN ) ) |
65 |
1 64
|
sylan2 |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ 1 e. ZZ /\ P e. NN ) ) |
66 |
65
|
adantr |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( 2 ^ ( 2 ^ N ) ) e. ZZ /\ 1 e. ZZ /\ P e. NN ) ) |
67 |
66 24
|
syl |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 <-> ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) ) |
68 |
|
m1modnnsub1 |
|- ( P e. NN -> ( -u 1 mod P ) = ( P - 1 ) ) |
69 |
23 68
|
syl |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( -u 1 mod P ) = ( P - 1 ) ) |
70 |
|
eldifsni |
|- ( P e. ( Prime \ { 2 } ) -> P =/= 2 ) |
71 |
70
|
adantl |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> P =/= 2 ) |
72 |
71
|
necomd |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> 2 =/= P ) |
73 |
3
|
nncnd |
|- ( P e. ( Prime \ { 2 } ) -> P e. CC ) |
74 |
73
|
adantl |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> P e. CC ) |
75 |
|
1cnd |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> 1 e. CC ) |
76 |
74 75 75
|
subadd2d |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) = 1 <-> ( 1 + 1 ) = P ) ) |
77 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
78 |
77
|
eqeq1i |
|- ( ( 1 + 1 ) = P <-> 2 = P ) |
79 |
76 78
|
bitrdi |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) = 1 <-> 2 = P ) ) |
80 |
79
|
necon3bid |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) =/= 1 <-> 2 =/= P ) ) |
81 |
72 80
|
mpbird |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P - 1 ) =/= 1 ) |
82 |
69 81
|
eqnetrd |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( -u 1 mod P ) =/= 1 ) |
83 |
82
|
adantr |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( -u 1 mod P ) =/= 1 ) |
84 |
83
|
adantr |
|- ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( -u 1 mod P ) =/= 1 ) |
85 |
|
eqeq1 |
|- ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = 1 <-> ( -u 1 mod P ) = 1 ) ) |
86 |
85
|
adantl |
|- ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = 1 <-> ( -u 1 mod P ) = 1 ) ) |
87 |
86
|
necon3bid |
|- ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 <-> ( -u 1 mod P ) =/= 1 ) ) |
88 |
84 87
|
mpbird |
|- ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 ) |
89 |
88
|
ex |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 ) ) |
90 |
67 89
|
sylbid |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 ) ) |
91 |
90
|
imp |
|- ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) -> ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 ) |
92 |
|
simplr |
|- ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) -> ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) |
93 |
|
odz2prm2pw |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) |
94 |
60 91 92 93
|
syl12anc |
|- ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) |
95 |
94
|
ex |
|- ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) |
96 |
95
|
ex |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) |
97 |
59 96
|
sylbid |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) mod P ) = ( ( -u 1 ^ 2 ) mod P ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) |
98 |
36 97
|
syld |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = ( -u 1 mod P ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) |
99 |
25 98
|
sylbid |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) |
100 |
99
|
pm2.43d |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) mod P ) = 0 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) |
101 |
13 100
|
syld |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( FermatNo ` N ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) |
102 |
101
|
3impia |
|- ( ( N e. NN /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) |