| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 2 |  | 2nn |  |-  2 e. NN | 
						
							| 3 | 2 | a1i |  |-  ( N e. NN -> 2 e. NN ) | 
						
							| 4 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 5 | 4 | a1i |  |-  ( N e. NN -> 2 e. NN0 ) | 
						
							| 6 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 7 | 6 | nnnn0d |  |-  ( N e. NN -> ( N + 1 ) e. NN0 ) | 
						
							| 8 | 5 7 | nn0expcld |  |-  ( N e. NN -> ( 2 ^ ( N + 1 ) ) e. NN0 ) | 
						
							| 9 | 3 8 | nnexpcld |  |-  ( N e. NN -> ( 2 ^ ( 2 ^ ( N + 1 ) ) ) e. NN ) | 
						
							| 10 | 9 | nnzd |  |-  ( N e. NN -> ( 2 ^ ( 2 ^ ( N + 1 ) ) ) e. ZZ ) | 
						
							| 11 |  | modprm1div |  |-  ( ( P e. Prime /\ ( 2 ^ ( 2 ^ ( N + 1 ) ) ) e. ZZ ) -> ( ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 <-> P || ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) - 1 ) ) ) | 
						
							| 12 | 1 10 11 | syl2anr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 <-> P || ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) - 1 ) ) ) | 
						
							| 13 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 14 | 1 13 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. NN ) | 
						
							| 15 | 14 | adantl |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> P e. NN ) | 
						
							| 16 |  | 2z |  |-  2 e. ZZ | 
						
							| 17 | 16 | a1i |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> 2 e. ZZ ) | 
						
							| 18 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 19 |  | simpr |  |-  ( ( P e. Prime /\ P =/= 2 ) -> P =/= 2 ) | 
						
							| 20 | 19 | necomd |  |-  ( ( P e. Prime /\ P =/= 2 ) -> 2 =/= P ) | 
						
							| 21 | 18 20 | sylbi |  |-  ( P e. ( Prime \ { 2 } ) -> 2 =/= P ) | 
						
							| 22 |  | 2prm |  |-  2 e. Prime | 
						
							| 23 |  | prmrp |  |-  ( ( 2 e. Prime /\ P e. Prime ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) | 
						
							| 24 | 22 1 23 | sylancr |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) | 
						
							| 25 | 21 24 | mpbird |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 gcd P ) = 1 ) | 
						
							| 26 | 25 | adantl |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 gcd P ) = 1 ) | 
						
							| 27 | 15 17 26 | 3jca |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) ) | 
						
							| 28 | 8 | adantr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ ( N + 1 ) ) e. NN0 ) | 
						
							| 29 |  | odzdvds |  |-  ( ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( 2 ^ ( N + 1 ) ) e. NN0 ) -> ( P || ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) - 1 ) <-> ( ( odZ ` P ) ` 2 ) || ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 30 | 27 28 29 | syl2anc |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) - 1 ) <-> ( ( odZ ` P ) ` 2 ) || ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 31 | 12 30 | bitrd |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 <-> ( ( odZ ` P ) ` 2 ) || ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 32 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 33 | 5 32 | nn0expcld |  |-  ( N e. NN -> ( 2 ^ N ) e. NN0 ) | 
						
							| 34 | 3 33 | nnexpcld |  |-  ( N e. NN -> ( 2 ^ ( 2 ^ N ) ) e. NN ) | 
						
							| 35 | 34 | nnzd |  |-  ( N e. NN -> ( 2 ^ ( 2 ^ N ) ) e. ZZ ) | 
						
							| 36 |  | modprm1div |  |-  ( ( P e. Prime /\ ( 2 ^ ( 2 ^ N ) ) e. ZZ ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = 1 <-> P || ( ( 2 ^ ( 2 ^ N ) ) - 1 ) ) ) | 
						
							| 37 | 1 35 36 | syl2anr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = 1 <-> P || ( ( 2 ^ ( 2 ^ N ) ) - 1 ) ) ) | 
						
							| 38 | 33 | adantr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 ^ N ) e. NN0 ) | 
						
							| 39 |  | odzdvds |  |-  ( ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) /\ ( 2 ^ N ) e. NN0 ) -> ( P || ( ( 2 ^ ( 2 ^ N ) ) - 1 ) <-> ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) ) ) | 
						
							| 40 | 27 38 39 | syl2anc |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( ( 2 ^ ( 2 ^ N ) ) - 1 ) <-> ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) ) ) | 
						
							| 41 | 37 40 | bitrd |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) = 1 <-> ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) ) ) | 
						
							| 42 | 41 | necon3abid |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 <-> -. ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) ) ) | 
						
							| 43 |  | odzcl |  |-  ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) -> ( ( odZ ` P ) ` 2 ) e. NN ) | 
						
							| 44 | 27 43 | syl |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( odZ ` P ) ` 2 ) e. NN ) | 
						
							| 45 | 7 | adantr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( N + 1 ) e. NN0 ) | 
						
							| 46 |  | dvdsprmpweqle |  |-  ( ( 2 e. Prime /\ ( ( odZ ` P ) ` 2 ) e. NN /\ ( N + 1 ) e. NN0 ) -> ( ( ( odZ ` P ) ` 2 ) || ( 2 ^ ( N + 1 ) ) -> E. n e. NN0 ( n <_ ( N + 1 ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) ) ) | 
						
							| 47 | 22 44 45 46 | mp3an2i |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( 2 ^ ( N + 1 ) ) -> E. n e. NN0 ( n <_ ( N + 1 ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) ) ) | 
						
							| 48 |  | breq1 |  |-  ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) -> ( ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) <-> ( 2 ^ n ) || ( 2 ^ N ) ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) <-> ( 2 ^ n ) || ( 2 ^ N ) ) ) | 
						
							| 50 | 49 | notbid |  |-  ( ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) -> ( -. ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) <-> -. ( 2 ^ n ) || ( 2 ^ N ) ) ) | 
						
							| 51 |  | simpr |  |-  ( ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) /\ -. ( 2 ^ n ) || ( 2 ^ N ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) | 
						
							| 53 |  | nn0re |  |-  ( n e. NN0 -> n e. RR ) | 
						
							| 54 | 6 | nnred |  |-  ( N e. NN -> ( N + 1 ) e. RR ) | 
						
							| 55 | 54 | adantr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( N + 1 ) e. RR ) | 
						
							| 56 |  | leloe |  |-  ( ( n e. RR /\ ( N + 1 ) e. RR ) -> ( n <_ ( N + 1 ) <-> ( n < ( N + 1 ) \/ n = ( N + 1 ) ) ) ) | 
						
							| 57 | 53 55 56 | syl2anr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> ( n <_ ( N + 1 ) <-> ( n < ( N + 1 ) \/ n = ( N + 1 ) ) ) ) | 
						
							| 58 |  | simpr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> n e. NN0 ) | 
						
							| 59 |  | nn0z |  |-  ( n e. NN0 -> n e. ZZ ) | 
						
							| 60 | 59 | adantl |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> n e. ZZ ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n < ( N + 1 ) ) -> n e. ZZ ) | 
						
							| 62 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 63 | 62 | adantr |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> N e. ZZ ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> N e. ZZ ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n < ( N + 1 ) ) -> N e. ZZ ) | 
						
							| 66 |  | zleltp1 |  |-  ( ( n e. ZZ /\ N e. ZZ ) -> ( n <_ N <-> n < ( N + 1 ) ) ) | 
						
							| 67 | 59 63 66 | syl2anr |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> ( n <_ N <-> n < ( N + 1 ) ) ) | 
						
							| 68 | 67 | biimpar |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n < ( N + 1 ) ) -> n <_ N ) | 
						
							| 69 |  | eluz2 |  |-  ( N e. ( ZZ>= ` n ) <-> ( n e. ZZ /\ N e. ZZ /\ n <_ N ) ) | 
						
							| 70 | 61 65 68 69 | syl3anbrc |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n < ( N + 1 ) ) -> N e. ( ZZ>= ` n ) ) | 
						
							| 71 |  | dvdsexp |  |-  ( ( 2 e. ZZ /\ n e. NN0 /\ N e. ( ZZ>= ` n ) ) -> ( 2 ^ n ) || ( 2 ^ N ) ) | 
						
							| 72 | 16 58 70 71 | mp3an2ani |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n < ( N + 1 ) ) -> ( 2 ^ n ) || ( 2 ^ N ) ) | 
						
							| 73 | 72 | pm2.24d |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n < ( N + 1 ) ) -> ( -. ( 2 ^ n ) || ( 2 ^ N ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 74 | 73 | expcom |  |-  ( n < ( N + 1 ) -> ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> ( -. ( 2 ^ n ) || ( 2 ^ N ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 75 |  | oveq2 |  |-  ( n = ( N + 1 ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 76 | 75 | 2a1d |  |-  ( n = ( N + 1 ) -> ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> ( -. ( 2 ^ n ) || ( 2 ^ N ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 77 | 74 76 | jaoi |  |-  ( ( n < ( N + 1 ) \/ n = ( N + 1 ) ) -> ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> ( -. ( 2 ^ n ) || ( 2 ^ N ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 78 | 77 | com12 |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> ( ( n < ( N + 1 ) \/ n = ( N + 1 ) ) -> ( -. ( 2 ^ n ) || ( 2 ^ N ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 79 | 57 78 | sylbid |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> ( n <_ ( N + 1 ) -> ( -. ( 2 ^ n ) || ( 2 ^ N ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 80 | 79 | imp |  |-  ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) -> ( -. ( 2 ^ n ) || ( 2 ^ N ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) -> ( -. ( 2 ^ n ) || ( 2 ^ N ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 82 | 81 | imp |  |-  ( ( ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) /\ -. ( 2 ^ n ) || ( 2 ^ N ) ) -> ( 2 ^ n ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 83 | 52 82 | eqtrd |  |-  ( ( ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) /\ -. ( 2 ^ n ) || ( 2 ^ N ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 84 | 83 | ex |  |-  ( ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) -> ( -. ( 2 ^ n ) || ( 2 ^ N ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 85 | 50 84 | sylbid |  |-  ( ( ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) /\ n <_ ( N + 1 ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) -> ( -. ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 86 | 85 | expl |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ n e. NN0 ) -> ( ( n <_ ( N + 1 ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) -> ( -. ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 87 | 86 | rexlimdva |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( E. n e. NN0 ( n <_ ( N + 1 ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ n ) ) -> ( -. ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 88 | 47 87 | syld |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( 2 ^ ( N + 1 ) ) -> ( -. ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 89 | 88 | com23 |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( -. ( ( odZ ` P ) ` 2 ) || ( 2 ^ N ) -> ( ( ( odZ ` P ) ` 2 ) || ( 2 ^ ( N + 1 ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 90 | 42 89 | sylbid |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 -> ( ( ( odZ ` P ) ` 2 ) || ( 2 ^ ( N + 1 ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 91 | 90 | com23 |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( 2 ^ ( N + 1 ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 92 | 31 91 | sylbid |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 93 | 92 | com23 |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 -> ( ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 94 | 93 | imp32 |  |-  ( ( ( N e. NN /\ P e. ( Prime \ { 2 } ) ) /\ ( ( ( 2 ^ ( 2 ^ N ) ) mod P ) =/= 1 /\ ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) mod P ) = 1 ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) |