| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
| 2 |
1
|
adantl |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> K e. RR ) |
| 3 |
|
odzcl |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) e. NN ) |
| 4 |
3
|
adantr |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( odZ ` N ) ` A ) e. NN ) |
| 5 |
4
|
nnrpd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( odZ ` N ) ` A ) e. RR+ ) |
| 6 |
|
modlt |
|- ( ( K e. RR /\ ( ( odZ ` N ) ` A ) e. RR+ ) -> ( K mod ( ( odZ ` N ) ` A ) ) < ( ( odZ ` N ) ` A ) ) |
| 7 |
2 5 6
|
syl2anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( K mod ( ( odZ ` N ) ` A ) ) < ( ( odZ ` N ) ` A ) ) |
| 8 |
|
nn0z |
|- ( K e. NN0 -> K e. ZZ ) |
| 9 |
8
|
adantl |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> K e. ZZ ) |
| 10 |
9 4
|
zmodcld |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( K mod ( ( odZ ` N ) ` A ) ) e. NN0 ) |
| 11 |
10
|
nn0red |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( K mod ( ( odZ ` N ) ` A ) ) e. RR ) |
| 12 |
4
|
nnred |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( odZ ` N ) ` A ) e. RR ) |
| 13 |
11 12
|
ltnled |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( K mod ( ( odZ ` N ) ` A ) ) < ( ( odZ ` N ) ` A ) <-> -. ( ( odZ ` N ) ` A ) <_ ( K mod ( ( odZ ` N ) ` A ) ) ) ) |
| 14 |
7 13
|
mpbid |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> -. ( ( odZ ` N ) ` A ) <_ ( K mod ( ( odZ ` N ) ` A ) ) ) |
| 15 |
|
oveq2 |
|- ( n = ( K mod ( ( odZ ` N ) ` A ) ) -> ( A ^ n ) = ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) |
| 16 |
15
|
oveq1d |
|- ( n = ( K mod ( ( odZ ` N ) ` A ) ) -> ( ( A ^ n ) - 1 ) = ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) ) |
| 17 |
16
|
breq2d |
|- ( n = ( K mod ( ( odZ ` N ) ` A ) ) -> ( N || ( ( A ^ n ) - 1 ) <-> N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) ) ) |
| 18 |
17
|
elrab |
|- ( ( K mod ( ( odZ ` N ) ` A ) ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } <-> ( ( K mod ( ( odZ ` N ) ` A ) ) e. NN /\ N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) ) ) |
| 19 |
|
ssrab2 |
|- { n e. NN | N || ( ( A ^ n ) - 1 ) } C_ NN |
| 20 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 21 |
19 20
|
sseqtri |
|- { n e. NN | N || ( ( A ^ n ) - 1 ) } C_ ( ZZ>= ` 1 ) |
| 22 |
|
infssuzle |
|- ( ( { n e. NN | N || ( ( A ^ n ) - 1 ) } C_ ( ZZ>= ` 1 ) /\ ( K mod ( ( odZ ` N ) ` A ) ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } ) -> inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) <_ ( K mod ( ( odZ ` N ) ` A ) ) ) |
| 23 |
21 22
|
mpan |
|- ( ( K mod ( ( odZ ` N ) ` A ) ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } -> inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) <_ ( K mod ( ( odZ ` N ) ` A ) ) ) |
| 24 |
18 23
|
sylbir |
|- ( ( ( K mod ( ( odZ ` N ) ` A ) ) e. NN /\ N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) ) -> inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) <_ ( K mod ( ( odZ ` N ) ` A ) ) ) |
| 25 |
24
|
ancoms |
|- ( ( N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) /\ ( K mod ( ( odZ ` N ) ` A ) ) e. NN ) -> inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) <_ ( K mod ( ( odZ ` N ) ` A ) ) ) |
| 26 |
|
odzval |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) = inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) ) |
| 27 |
26
|
adantr |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( odZ ` N ) ` A ) = inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) ) |
| 28 |
27
|
breq1d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( odZ ` N ) ` A ) <_ ( K mod ( ( odZ ` N ) ` A ) ) <-> inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) <_ ( K mod ( ( odZ ` N ) ` A ) ) ) ) |
| 29 |
25 28
|
imbitrrid |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) /\ ( K mod ( ( odZ ` N ) ` A ) ) e. NN ) -> ( ( odZ ` N ) ` A ) <_ ( K mod ( ( odZ ` N ) ` A ) ) ) ) |
| 30 |
14 29
|
mtod |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> -. ( N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) /\ ( K mod ( ( odZ ` N ) ` A ) ) e. NN ) ) |
| 31 |
|
imnan |
|- ( ( N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) -> -. ( K mod ( ( odZ ` N ) ` A ) ) e. NN ) <-> -. ( N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) /\ ( K mod ( ( odZ ` N ) ` A ) ) e. NN ) ) |
| 32 |
30 31
|
sylibr |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) -> -. ( K mod ( ( odZ ` N ) ` A ) ) e. NN ) ) |
| 33 |
|
elnn0 |
|- ( ( K mod ( ( odZ ` N ) ` A ) ) e. NN0 <-> ( ( K mod ( ( odZ ` N ) ` A ) ) e. NN \/ ( K mod ( ( odZ ` N ) ` A ) ) = 0 ) ) |
| 34 |
10 33
|
sylib |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( K mod ( ( odZ ` N ) ` A ) ) e. NN \/ ( K mod ( ( odZ ` N ) ` A ) ) = 0 ) ) |
| 35 |
34
|
ord |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( -. ( K mod ( ( odZ ` N ) ` A ) ) e. NN -> ( K mod ( ( odZ ` N ) ` A ) ) = 0 ) ) |
| 36 |
32 35
|
syld |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) -> ( K mod ( ( odZ ` N ) ` A ) ) = 0 ) ) |
| 37 |
|
simpl1 |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> N e. NN ) |
| 38 |
37
|
nnzd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> N e. ZZ ) |
| 39 |
|
dvds0 |
|- ( N e. ZZ -> N || 0 ) |
| 40 |
38 39
|
syl |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> N || 0 ) |
| 41 |
|
simpl2 |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> A e. ZZ ) |
| 42 |
41
|
zcnd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> A e. CC ) |
| 43 |
42
|
exp0d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ 0 ) = 1 ) |
| 44 |
43
|
oveq1d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( A ^ 0 ) - 1 ) = ( 1 - 1 ) ) |
| 45 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 46 |
44 45
|
eqtrdi |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( A ^ 0 ) - 1 ) = 0 ) |
| 47 |
40 46
|
breqtrrd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> N || ( ( A ^ 0 ) - 1 ) ) |
| 48 |
|
oveq2 |
|- ( ( K mod ( ( odZ ` N ) ` A ) ) = 0 -> ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) = ( A ^ 0 ) ) |
| 49 |
48
|
oveq1d |
|- ( ( K mod ( ( odZ ` N ) ` A ) ) = 0 -> ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) = ( ( A ^ 0 ) - 1 ) ) |
| 50 |
49
|
breq2d |
|- ( ( K mod ( ( odZ ` N ) ` A ) ) = 0 -> ( N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) <-> N || ( ( A ^ 0 ) - 1 ) ) ) |
| 51 |
47 50
|
syl5ibrcom |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( K mod ( ( odZ ` N ) ` A ) ) = 0 -> N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) ) ) |
| 52 |
36 51
|
impbid |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) <-> ( K mod ( ( odZ ` N ) ` A ) ) = 0 ) ) |
| 53 |
4
|
nnnn0d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( odZ ` N ) ` A ) e. NN0 ) |
| 54 |
2 4
|
nndivred |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( K / ( ( odZ ` N ) ` A ) ) e. RR ) |
| 55 |
|
nn0ge0 |
|- ( K e. NN0 -> 0 <_ K ) |
| 56 |
55
|
adantl |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> 0 <_ K ) |
| 57 |
4
|
nngt0d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> 0 < ( ( odZ ` N ) ` A ) ) |
| 58 |
|
ge0div |
|- ( ( K e. RR /\ ( ( odZ ` N ) ` A ) e. RR /\ 0 < ( ( odZ ` N ) ` A ) ) -> ( 0 <_ K <-> 0 <_ ( K / ( ( odZ ` N ) ` A ) ) ) ) |
| 59 |
2 12 57 58
|
syl3anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( 0 <_ K <-> 0 <_ ( K / ( ( odZ ` N ) ` A ) ) ) ) |
| 60 |
56 59
|
mpbid |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> 0 <_ ( K / ( ( odZ ` N ) ` A ) ) ) |
| 61 |
|
flge0nn0 |
|- ( ( ( K / ( ( odZ ` N ) ` A ) ) e. RR /\ 0 <_ ( K / ( ( odZ ` N ) ` A ) ) ) -> ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) e. NN0 ) |
| 62 |
54 60 61
|
syl2anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) e. NN0 ) |
| 63 |
53 62
|
nn0mulcld |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) e. NN0 ) |
| 64 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) e. NN0 ) -> ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) e. ZZ ) |
| 65 |
41 63 64
|
syl2anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) e. ZZ ) |
| 66 |
65
|
zred |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) e. RR ) |
| 67 |
|
1red |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> 1 e. RR ) |
| 68 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( K mod ( ( odZ ` N ) ` A ) ) e. NN0 ) -> ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) e. ZZ ) |
| 69 |
41 10 68
|
syl2anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) e. ZZ ) |
| 70 |
37
|
nnrpd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> N e. RR+ ) |
| 71 |
42 62 53
|
expmuld |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) = ( ( A ^ ( ( odZ ` N ) ` A ) ) ^ ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) |
| 72 |
71
|
oveq1d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) mod N ) = ( ( ( A ^ ( ( odZ ` N ) ` A ) ) ^ ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) mod N ) ) |
| 73 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( ( odZ ` N ) ` A ) e. NN0 ) -> ( A ^ ( ( odZ ` N ) ` A ) ) e. ZZ ) |
| 74 |
41 53 73
|
syl2anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ ( ( odZ ` N ) ` A ) ) e. ZZ ) |
| 75 |
|
1zzd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> 1 e. ZZ ) |
| 76 |
|
odzid |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) |
| 77 |
76
|
adantr |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) |
| 78 |
|
moddvds |
|- ( ( N e. NN /\ ( A ^ ( ( odZ ` N ) ` A ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( ( odZ ` N ) ` A ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |
| 79 |
37 74 75 78
|
syl3anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( A ^ ( ( odZ ` N ) ` A ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |
| 80 |
77 79
|
mpbird |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( A ^ ( ( odZ ` N ) ` A ) ) mod N ) = ( 1 mod N ) ) |
| 81 |
|
modexp |
|- ( ( ( ( A ^ ( ( odZ ` N ) ` A ) ) e. ZZ /\ 1 e. ZZ ) /\ ( ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) e. NN0 /\ N e. RR+ ) /\ ( ( A ^ ( ( odZ ` N ) ` A ) ) mod N ) = ( 1 mod N ) ) -> ( ( ( A ^ ( ( odZ ` N ) ` A ) ) ^ ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) mod N ) = ( ( 1 ^ ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) mod N ) ) |
| 82 |
74 75 62 70 80 81
|
syl221anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( A ^ ( ( odZ ` N ) ` A ) ) ^ ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) mod N ) = ( ( 1 ^ ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) mod N ) ) |
| 83 |
54
|
flcld |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) e. ZZ ) |
| 84 |
|
1exp |
|- ( ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) e. ZZ -> ( 1 ^ ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) = 1 ) |
| 85 |
83 84
|
syl |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( 1 ^ ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) = 1 ) |
| 86 |
85
|
oveq1d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( 1 ^ ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) mod N ) = ( 1 mod N ) ) |
| 87 |
72 82 86
|
3eqtrd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) mod N ) = ( 1 mod N ) ) |
| 88 |
|
modmul1 |
|- ( ( ( ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) e. RR /\ 1 e. RR ) /\ ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) e. ZZ /\ N e. RR+ ) /\ ( ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) mod N ) = ( 1 mod N ) ) -> ( ( ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) x. ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) mod N ) = ( ( 1 x. ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) mod N ) ) |
| 89 |
66 67 69 70 87 88
|
syl221anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) x. ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) mod N ) = ( ( 1 x. ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) mod N ) ) |
| 90 |
42 10 63
|
expaddd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ ( ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) + ( K mod ( ( odZ ` N ) ` A ) ) ) ) = ( ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) x. ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) ) |
| 91 |
|
modval |
|- ( ( K e. RR /\ ( ( odZ ` N ) ` A ) e. RR+ ) -> ( K mod ( ( odZ ` N ) ` A ) ) = ( K - ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) ) |
| 92 |
2 5 91
|
syl2anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( K mod ( ( odZ ` N ) ` A ) ) = ( K - ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) ) |
| 93 |
92
|
oveq2d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) + ( K mod ( ( odZ ` N ) ` A ) ) ) = ( ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) + ( K - ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) ) ) |
| 94 |
63
|
nn0cnd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) e. CC ) |
| 95 |
2
|
recnd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> K e. CC ) |
| 96 |
94 95
|
pncan3d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) + ( K - ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) ) = K ) |
| 97 |
93 96
|
eqtrd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) + ( K mod ( ( odZ ` N ) ` A ) ) ) = K ) |
| 98 |
97
|
oveq2d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ ( ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) + ( K mod ( ( odZ ` N ) ` A ) ) ) ) = ( A ^ K ) ) |
| 99 |
90 98
|
eqtr3d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) x. ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) = ( A ^ K ) ) |
| 100 |
99
|
oveq1d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( A ^ ( ( ( odZ ` N ) ` A ) x. ( |_ ` ( K / ( ( odZ ` N ) ` A ) ) ) ) ) x. ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) mod N ) = ( ( A ^ K ) mod N ) ) |
| 101 |
69
|
zcnd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) e. CC ) |
| 102 |
101
|
mullidd |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( 1 x. ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) = ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) |
| 103 |
102
|
oveq1d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( 1 x. ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) ) mod N ) = ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) mod N ) ) |
| 104 |
89 100 103
|
3eqtr3d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( A ^ K ) mod N ) = ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) mod N ) ) |
| 105 |
104
|
eqeq1d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( A ^ K ) mod N ) = ( 1 mod N ) <-> ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) mod N ) = ( 1 mod N ) ) ) |
| 106 |
|
zexpcl |
|- ( ( A e. ZZ /\ K e. NN0 ) -> ( A ^ K ) e. ZZ ) |
| 107 |
41 106
|
sylancom |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( A ^ K ) e. ZZ ) |
| 108 |
|
moddvds |
|- ( ( N e. NN /\ ( A ^ K ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ K ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ K ) - 1 ) ) ) |
| 109 |
37 107 75 108
|
syl3anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( A ^ K ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ K ) - 1 ) ) ) |
| 110 |
|
moddvds |
|- ( ( N e. NN /\ ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) ) ) |
| 111 |
37 69 75 110
|
syl3anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) ) ) |
| 112 |
105 109 111
|
3bitr3d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( N || ( ( A ^ K ) - 1 ) <-> N || ( ( A ^ ( K mod ( ( odZ ` N ) ` A ) ) ) - 1 ) ) ) |
| 113 |
|
dvdsval3 |
|- ( ( ( ( odZ ` N ) ` A ) e. NN /\ K e. ZZ ) -> ( ( ( odZ ` N ) ` A ) || K <-> ( K mod ( ( odZ ` N ) ` A ) ) = 0 ) ) |
| 114 |
4 9 113
|
syl2anc |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( ( ( odZ ` N ) ` A ) || K <-> ( K mod ( ( odZ ` N ) ` A ) ) = 0 ) ) |
| 115 |
52 112 114
|
3bitr4d |
|- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ K e. NN0 ) -> ( N || ( ( A ^ K ) - 1 ) <-> ( ( odZ ` N ) ` A ) || K ) ) |