Metamath Proof Explorer


Theorem odzdvds

Description: The only powers of A that are congruent to 1 are the multiples of the order of A . (Contributed by Mario Carneiro, 28-Feb-2014) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Assertion odzdvds NAAgcdN=1K0NAK1odNAK

Proof

Step Hyp Ref Expression
1 nn0re K0K
2 1 adantl NAAgcdN=1K0K
3 odzcl NAAgcdN=1odNA
4 3 adantr NAAgcdN=1K0odNA
5 4 nnrpd NAAgcdN=1K0odNA+
6 modlt KodNA+KmododNA<odNA
7 2 5 6 syl2anc NAAgcdN=1K0KmododNA<odNA
8 nn0z K0K
9 8 adantl NAAgcdN=1K0K
10 9 4 zmodcld NAAgcdN=1K0KmododNA0
11 10 nn0red NAAgcdN=1K0KmododNA
12 4 nnred NAAgcdN=1K0odNA
13 11 12 ltnled NAAgcdN=1K0KmododNA<odNA¬odNAKmododNA
14 7 13 mpbid NAAgcdN=1K0¬odNAKmododNA
15 oveq2 n=KmododNAAn=AKmododNA
16 15 oveq1d n=KmododNAAn1=AKmododNA1
17 16 breq2d n=KmododNANAn1NAKmododNA1
18 17 elrab KmododNAn|NAn1KmododNANAKmododNA1
19 ssrab2 n|NAn1
20 nnuz =1
21 19 20 sseqtri n|NAn11
22 infssuzle n|NAn11KmododNAn|NAn1supn|NAn1<KmododNA
23 21 22 mpan KmododNAn|NAn1supn|NAn1<KmododNA
24 18 23 sylbir KmododNANAKmododNA1supn|NAn1<KmododNA
25 24 ancoms NAKmododNA1KmododNAsupn|NAn1<KmododNA
26 odzval NAAgcdN=1odNA=supn|NAn1<
27 26 adantr NAAgcdN=1K0odNA=supn|NAn1<
28 27 breq1d NAAgcdN=1K0odNAKmododNAsupn|NAn1<KmododNA
29 25 28 imbitrrid NAAgcdN=1K0NAKmododNA1KmododNAodNAKmododNA
30 14 29 mtod NAAgcdN=1K0¬NAKmododNA1KmododNA
31 imnan NAKmododNA1¬KmododNA¬NAKmododNA1KmododNA
32 30 31 sylibr NAAgcdN=1K0NAKmododNA1¬KmododNA
33 elnn0 KmododNA0KmododNAKmododNA=0
34 10 33 sylib NAAgcdN=1K0KmododNAKmododNA=0
35 34 ord NAAgcdN=1K0¬KmododNAKmododNA=0
36 32 35 syld NAAgcdN=1K0NAKmododNA1KmododNA=0
37 simpl1 NAAgcdN=1K0N
38 37 nnzd NAAgcdN=1K0N
39 dvds0 NN0
40 38 39 syl NAAgcdN=1K0N0
41 simpl2 NAAgcdN=1K0A
42 41 zcnd NAAgcdN=1K0A
43 42 exp0d NAAgcdN=1K0A0=1
44 43 oveq1d NAAgcdN=1K0A01=11
45 1m1e0 11=0
46 44 45 eqtrdi NAAgcdN=1K0A01=0
47 40 46 breqtrrd NAAgcdN=1K0NA01
48 oveq2 KmododNA=0AKmododNA=A0
49 48 oveq1d KmododNA=0AKmododNA1=A01
50 49 breq2d KmododNA=0NAKmododNA1NA01
51 47 50 syl5ibrcom NAAgcdN=1K0KmododNA=0NAKmododNA1
52 36 51 impbid NAAgcdN=1K0NAKmododNA1KmododNA=0
53 4 nnnn0d NAAgcdN=1K0odNA0
54 2 4 nndivred NAAgcdN=1K0KodNA
55 nn0ge0 K00K
56 55 adantl NAAgcdN=1K00K
57 4 nngt0d NAAgcdN=1K00<odNA
58 ge0div KodNA0<odNA0K0KodNA
59 2 12 57 58 syl3anc NAAgcdN=1K00K0KodNA
60 56 59 mpbid NAAgcdN=1K00KodNA
61 flge0nn0 KodNA0KodNAKodNA0
62 54 60 61 syl2anc NAAgcdN=1K0KodNA0
63 53 62 nn0mulcld NAAgcdN=1K0odNAKodNA0
64 zexpcl AodNAKodNA0AodNAKodNA
65 41 63 64 syl2anc NAAgcdN=1K0AodNAKodNA
66 65 zred NAAgcdN=1K0AodNAKodNA
67 1red NAAgcdN=1K01
68 zexpcl AKmododNA0AKmododNA
69 41 10 68 syl2anc NAAgcdN=1K0AKmododNA
70 37 nnrpd NAAgcdN=1K0N+
71 42 62 53 expmuld NAAgcdN=1K0AodNAKodNA=AodNAKodNA
72 71 oveq1d NAAgcdN=1K0AodNAKodNAmodN=AodNAKodNAmodN
73 zexpcl AodNA0AodNA
74 41 53 73 syl2anc NAAgcdN=1K0AodNA
75 1zzd NAAgcdN=1K01
76 odzid NAAgcdN=1NAodNA1
77 76 adantr NAAgcdN=1K0NAodNA1
78 moddvds NAodNA1AodNAmodN=1modNNAodNA1
79 37 74 75 78 syl3anc NAAgcdN=1K0AodNAmodN=1modNNAodNA1
80 77 79 mpbird NAAgcdN=1K0AodNAmodN=1modN
81 modexp AodNA1KodNA0N+AodNAmodN=1modNAodNAKodNAmodN=1KodNAmodN
82 74 75 62 70 80 81 syl221anc NAAgcdN=1K0AodNAKodNAmodN=1KodNAmodN
83 54 flcld NAAgcdN=1K0KodNA
84 1exp KodNA1KodNA=1
85 83 84 syl NAAgcdN=1K01KodNA=1
86 85 oveq1d NAAgcdN=1K01KodNAmodN=1modN
87 72 82 86 3eqtrd NAAgcdN=1K0AodNAKodNAmodN=1modN
88 modmul1 AodNAKodNA1AKmododNAN+AodNAKodNAmodN=1modNAodNAKodNAAKmododNAmodN=1AKmododNAmodN
89 66 67 69 70 87 88 syl221anc NAAgcdN=1K0AodNAKodNAAKmododNAmodN=1AKmododNAmodN
90 42 10 63 expaddd NAAgcdN=1K0AodNAKodNA+KmododNA=AodNAKodNAAKmododNA
91 modval KodNA+KmododNA=KodNAKodNA
92 2 5 91 syl2anc NAAgcdN=1K0KmododNA=KodNAKodNA
93 92 oveq2d NAAgcdN=1K0odNAKodNA+KmododNA=odNAKodNA+K-odNAKodNA
94 63 nn0cnd NAAgcdN=1K0odNAKodNA
95 2 recnd NAAgcdN=1K0K
96 94 95 pncan3d NAAgcdN=1K0odNAKodNA+K-odNAKodNA=K
97 93 96 eqtrd NAAgcdN=1K0odNAKodNA+KmododNA=K
98 97 oveq2d NAAgcdN=1K0AodNAKodNA+KmododNA=AK
99 90 98 eqtr3d NAAgcdN=1K0AodNAKodNAAKmododNA=AK
100 99 oveq1d NAAgcdN=1K0AodNAKodNAAKmododNAmodN=AKmodN
101 69 zcnd NAAgcdN=1K0AKmododNA
102 101 mullidd NAAgcdN=1K01AKmododNA=AKmododNA
103 102 oveq1d NAAgcdN=1K01AKmododNAmodN=AKmododNAmodN
104 89 100 103 3eqtr3d NAAgcdN=1K0AKmodN=AKmododNAmodN
105 104 eqeq1d NAAgcdN=1K0AKmodN=1modNAKmododNAmodN=1modN
106 zexpcl AK0AK
107 41 106 sylancom NAAgcdN=1K0AK
108 moddvds NAK1AKmodN=1modNNAK1
109 37 107 75 108 syl3anc NAAgcdN=1K0AKmodN=1modNNAK1
110 moddvds NAKmododNA1AKmododNAmodN=1modNNAKmododNA1
111 37 69 75 110 syl3anc NAAgcdN=1K0AKmododNAmodN=1modNNAKmododNA1
112 105 109 111 3bitr3d NAAgcdN=1K0NAK1NAKmododNA1
113 dvdsval3 odNAKodNAKKmododNA=0
114 4 9 113 syl2anc NAAgcdN=1K0odNAKKmododNA=0
115 52 112 114 3bitr4d NAAgcdN=1K0NAK1odNAK