Metamath Proof Explorer


Definition df-odz

Description: Define the order function on the class of integers modulo N. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by AV, 26-Sep-2020)

Ref Expression
Assertion df-odz od=nxx|xgcdn=1supm|nxm1<

Detailed syntax breakdown

Step Hyp Ref Expression
0 codz classod
1 vn setvarn
2 cn class
3 vx setvarx
4 cz class
5 3 cv setvarx
6 cgcd classgcd
7 1 cv setvarn
8 5 7 6 co classxgcdn
9 c1 class1
10 8 9 wceq wffxgcdn=1
11 10 3 4 crab classx|xgcdn=1
12 vm setvarm
13 cdvds class
14 cexp class^
15 12 cv setvarm
16 5 15 14 co classxm
17 cmin class
18 16 9 17 co classxm1
19 7 18 13 wbr wffnxm1
20 19 12 2 crab classm|nxm1
21 cr class
22 clt class<
23 20 21 22 cinf classsupm|nxm1<
24 3 11 23 cmpt classxx|xgcdn=1supm|nxm1<
25 1 2 24 cmpt classnxx|xgcdn=1supm|nxm1<
26 0 25 wceq wffod=nxx|xgcdn=1supm|nxm1<