Metamath Proof Explorer


Theorem odzphi

Description: The order of any group element is a divisor of the Euler phi function. (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion odzphi N A A gcd N = 1 od N A ϕ N

Proof

Step Hyp Ref Expression
1 eulerth N A A gcd N = 1 A ϕ N mod N = 1 mod N
2 simp1 N A A gcd N = 1 N
3 simp2 N A A gcd N = 1 A
4 2 phicld N A A gcd N = 1 ϕ N
5 4 nnnn0d N A A gcd N = 1 ϕ N 0
6 zexpcl A ϕ N 0 A ϕ N
7 3 5 6 syl2anc N A A gcd N = 1 A ϕ N
8 1zzd N A A gcd N = 1 1
9 moddvds N A ϕ N 1 A ϕ N mod N = 1 mod N N A ϕ N 1
10 2 7 8 9 syl3anc N A A gcd N = 1 A ϕ N mod N = 1 mod N N A ϕ N 1
11 1 10 mpbid N A A gcd N = 1 N A ϕ N 1
12 odzdvds N A A gcd N = 1 ϕ N 0 N A ϕ N 1 od N A ϕ N
13 5 12 mpdan N A A gcd N = 1 N A ϕ N 1 od N A ϕ N
14 11 13 mpbid N A A gcd N = 1 od N A ϕ N