Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|
2 |
|
2nn |
|
3 |
2
|
a1i |
|
4 |
|
2nn0 |
|
5 |
4
|
a1i |
|
6 |
|
peano2nn |
|
7 |
6
|
nnnn0d |
|
8 |
5 7
|
nn0expcld |
|
9 |
3 8
|
nnexpcld |
|
10 |
9
|
nnzd |
|
11 |
|
modprm1div |
|
12 |
1 10 11
|
syl2anr |
|
13 |
|
prmnn |
|
14 |
1 13
|
syl |
|
15 |
14
|
adantl |
|
16 |
|
2z |
|
17 |
16
|
a1i |
|
18 |
|
eldifsn |
|
19 |
|
simpr |
|
20 |
19
|
necomd |
|
21 |
18 20
|
sylbi |
|
22 |
|
2prm |
|
23 |
|
prmrp |
|
24 |
22 1 23
|
sylancr |
|
25 |
21 24
|
mpbird |
|
26 |
25
|
adantl |
|
27 |
15 17 26
|
3jca |
|
28 |
8
|
adantr |
|
29 |
|
odzdvds |
|
30 |
27 28 29
|
syl2anc |
|
31 |
12 30
|
bitrd |
|
32 |
|
nnnn0 |
|
33 |
5 32
|
nn0expcld |
|
34 |
3 33
|
nnexpcld |
|
35 |
34
|
nnzd |
|
36 |
|
modprm1div |
|
37 |
1 35 36
|
syl2anr |
|
38 |
33
|
adantr |
|
39 |
|
odzdvds |
|
40 |
27 38 39
|
syl2anc |
|
41 |
37 40
|
bitrd |
|
42 |
41
|
necon3abid |
|
43 |
|
odzcl |
|
44 |
27 43
|
syl |
|
45 |
7
|
adantr |
|
46 |
|
dvdsprmpweqle |
|
47 |
22 44 45 46
|
mp3an2i |
|
48 |
|
breq1 |
|
49 |
48
|
adantl |
|
50 |
49
|
notbid |
|
51 |
|
simpr |
|
52 |
51
|
adantr |
|
53 |
|
nn0re |
|
54 |
6
|
nnred |
|
55 |
54
|
adantr |
|
56 |
|
leloe |
|
57 |
53 55 56
|
syl2anr |
|
58 |
|
simpr |
|
59 |
|
nn0z |
|
60 |
59
|
adantl |
|
61 |
60
|
adantr |
|
62 |
|
nnz |
|
63 |
62
|
adantr |
|
64 |
63
|
adantr |
|
65 |
64
|
adantr |
|
66 |
|
zleltp1 |
|
67 |
59 63 66
|
syl2anr |
|
68 |
67
|
biimpar |
|
69 |
|
eluz2 |
|
70 |
61 65 68 69
|
syl3anbrc |
|
71 |
|
dvdsexp |
|
72 |
16 58 70 71
|
mp3an2ani |
|
73 |
72
|
pm2.24d |
|
74 |
73
|
expcom |
|
75 |
|
oveq2 |
|
76 |
75
|
2a1d |
|
77 |
74 76
|
jaoi |
|
78 |
77
|
com12 |
|
79 |
57 78
|
sylbid |
|
80 |
79
|
imp |
|
81 |
80
|
adantr |
|
82 |
81
|
imp |
|
83 |
52 82
|
eqtrd |
|
84 |
83
|
ex |
|
85 |
50 84
|
sylbid |
|
86 |
85
|
expl |
|
87 |
86
|
rexlimdva |
|
88 |
47 87
|
syld |
|
89 |
88
|
com23 |
|
90 |
42 89
|
sylbid |
|
91 |
90
|
com23 |
|
92 |
31 91
|
sylbid |
|
93 |
92
|
com23 |
|
94 |
93
|
imp32 |
|