| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 4 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 6 |  | peano2nn | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 7 | 6 | nnnn0d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 8 | 5 7 | nn0expcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ0 ) | 
						
							| 9 | 3 8 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  ∈  ℕ ) | 
						
							| 10 | 9 | nnzd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  ∈  ℤ ) | 
						
							| 11 |  | modprm1div | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  ∈  ℤ )  →  ( ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1  ↔  𝑃  ∥  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  −  1 ) ) ) | 
						
							| 12 | 1 10 11 | syl2anr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1  ↔  𝑃  ∥  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  −  1 ) ) ) | 
						
							| 13 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℕ ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  𝑃  ∈  ℕ ) | 
						
							| 16 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 17 | 16 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  2  ∈  ℤ ) | 
						
							| 18 |  | eldifsn | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  →  𝑃  ≠  2 ) | 
						
							| 20 | 19 | necomd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  →  2  ≠  𝑃 ) | 
						
							| 21 | 18 20 | sylbi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  2  ≠  𝑃 ) | 
						
							| 22 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 23 |  | prmrp | ⊢ ( ( 2  ∈  ℙ  ∧  𝑃  ∈  ℙ )  →  ( ( 2  gcd  𝑃 )  =  1  ↔  2  ≠  𝑃 ) ) | 
						
							| 24 | 22 1 23 | sylancr | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 2  gcd  𝑃 )  =  1  ↔  2  ≠  𝑃 ) ) | 
						
							| 25 | 21 24 | mpbird | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 2  gcd  𝑃 )  =  1 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2  gcd  𝑃 )  =  1 ) | 
						
							| 27 | 15 17 26 | 3jca | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 ) ) | 
						
							| 28 | 8 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ0 ) | 
						
							| 29 |  | odzdvds | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 )  ∧  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ0 )  →  ( 𝑃  ∥  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 30 | 27 28 29 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃  ∥  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 31 | 12 30 | bitrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 32 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 33 | 5 32 | nn0expcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 34 | 3 33 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℕ ) | 
						
							| 35 | 34 | nnzd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ ) | 
						
							| 36 |  | modprm1div | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  1  ↔  𝑃  ∥  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  −  1 ) ) ) | 
						
							| 37 | 1 35 36 | syl2anr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  1  ↔  𝑃  ∥  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  −  1 ) ) ) | 
						
							| 38 | 33 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 39 |  | odzdvds | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 )  ∧  ( 2 ↑ 𝑁 )  ∈  ℕ0 )  →  ( 𝑃  ∥  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 40 | 27 38 39 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃  ∥  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 41 | 37 40 | bitrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  1  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 42 | 41 | necon3abid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1  ↔  ¬  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 43 |  | odzcl | ⊢ ( ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∈  ℕ ) | 
						
							| 44 | 27 43 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∈  ℕ ) | 
						
							| 45 | 7 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 46 |  | dvdsprmpweqle | ⊢ ( ( 2  ∈  ℙ  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∈  ℕ  ∧  ( 𝑁  +  1 )  ∈  ℕ0 )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ ( 𝑁  +  1 ) )  →  ∃ 𝑛  ∈  ℕ0 ( 𝑛  ≤  ( 𝑁  +  1 )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 47 | 22 44 45 46 | mp3an2i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ ( 𝑁  +  1 ) )  →  ∃ 𝑛  ∈  ℕ0 ( 𝑛  ≤  ( 𝑁  +  1 )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 48 |  | breq1 | ⊢ ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 )  ↔  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 )  ↔  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 50 | 49 | notbid | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  →  ( ¬  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 )  ↔  ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 51 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  ∧  ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 53 |  | nn0re | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℝ ) | 
						
							| 54 | 6 | nnred | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 56 |  | leloe | ⊢ ( ( 𝑛  ∈  ℝ  ∧  ( 𝑁  +  1 )  ∈  ℝ )  →  ( 𝑛  ≤  ( 𝑁  +  1 )  ↔  ( 𝑛  <  ( 𝑁  +  1 )  ∨  𝑛  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 57 | 53 55 56 | syl2anr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ≤  ( 𝑁  +  1 )  ↔  ( 𝑛  <  ( 𝑁  +  1 )  ∨  𝑛  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 58 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 59 |  | nn0z | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℤ ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑁  +  1 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 62 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  𝑁  ∈  ℤ ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑁  +  1 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 66 |  | zleltp1 | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑛  ≤  𝑁  ↔  𝑛  <  ( 𝑁  +  1 ) ) ) | 
						
							| 67 | 59 63 66 | syl2anr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ≤  𝑁  ↔  𝑛  <  ( 𝑁  +  1 ) ) ) | 
						
							| 68 | 67 | biimpar | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑁  +  1 ) )  →  𝑛  ≤  𝑁 ) | 
						
							| 69 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑛 )  ↔  ( 𝑛  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑛  ≤  𝑁 ) ) | 
						
							| 70 | 61 65 68 69 | syl3anbrc | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑁  +  1 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 71 |  | dvdsexp | ⊢ ( ( 2  ∈  ℤ  ∧  𝑛  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 ) ) | 
						
							| 72 | 16 58 70 71 | mp3an2ani | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑁  +  1 ) )  →  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 ) ) | 
						
							| 73 | 72 | pm2.24d | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑁  +  1 ) )  →  ( ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 74 | 73 | expcom | ⊢ ( 𝑛  <  ( 𝑁  +  1 )  →  ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 75 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑁  +  1 )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 76 | 75 | 2a1d | ⊢ ( 𝑛  =  ( 𝑁  +  1 )  →  ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 77 | 74 76 | jaoi | ⊢ ( ( 𝑛  <  ( 𝑁  +  1 )  ∨  𝑛  =  ( 𝑁  +  1 ) )  →  ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 78 | 77 | com12 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  <  ( 𝑁  +  1 )  ∨  𝑛  =  ( 𝑁  +  1 ) )  →  ( ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 79 | 57 78 | sylbid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ≤  ( 𝑁  +  1 )  →  ( ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 80 | 79 | imp | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  →  ( ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  →  ( ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 82 | 81 | imp | ⊢ ( ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  ∧  ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 ) )  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 83 | 52 82 | eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  ∧  ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 84 | 83 | ex | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  →  ( ¬  ( 2 ↑ 𝑛 )  ∥  ( 2 ↑ 𝑁 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 85 | 50 84 | sylbid | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  ≤  ( 𝑁  +  1 ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  →  ( ¬  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 86 | 85 | expl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ≤  ( 𝑁  +  1 )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  →  ( ¬  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 87 | 86 | rexlimdva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ∃ 𝑛  ∈  ℕ0 ( 𝑛  ≤  ( 𝑁  +  1 )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ 𝑛 ) )  →  ( ¬  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 88 | 47 87 | syld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ ( 𝑁  +  1 ) )  →  ( ¬  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 89 | 88 | com23 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ¬  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ 𝑁 )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ ( 𝑁  +  1 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 90 | 42 89 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ ( 𝑁  +  1 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 91 | 90 | com23 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 2 ↑ ( 𝑁  +  1 ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 92 | 31 91 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 93 | 92 | com23 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1  →  ( ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 94 | 93 | imp32 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) |