Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
2 |
|
2nn |
⊢ 2 ∈ ℕ |
3 |
2
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ0 ) |
6 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
7 |
6
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ0 ) |
8 |
5 7
|
nn0expcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ0 ) |
9 |
3 8
|
nnexpcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) ∈ ℕ ) |
10 |
9
|
nnzd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) ∈ ℤ ) |
11 |
|
modprm1div |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) ∈ ℤ ) → ( ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ↔ 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) − 1 ) ) ) |
12 |
1 10 11
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ↔ 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) − 1 ) ) ) |
13 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
14 |
1 13
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℕ ) |
15 |
14
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑃 ∈ ℕ ) |
16 |
|
2z |
⊢ 2 ∈ ℤ |
17 |
16
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 2 ∈ ℤ ) |
18 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
19 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 𝑃 ≠ 2 ) |
20 |
19
|
necomd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 2 ≠ 𝑃 ) |
21 |
18 20
|
sylbi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 ≠ 𝑃 ) |
22 |
|
2prm |
⊢ 2 ∈ ℙ |
23 |
|
prmrp |
⊢ ( ( 2 ∈ ℙ ∧ 𝑃 ∈ ℙ ) → ( ( 2 gcd 𝑃 ) = 1 ↔ 2 ≠ 𝑃 ) ) |
24 |
22 1 23
|
sylancr |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 2 gcd 𝑃 ) = 1 ↔ 2 ≠ 𝑃 ) ) |
25 |
21 24
|
mpbird |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 2 gcd 𝑃 ) = 1 ) |
26 |
25
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 gcd 𝑃 ) = 1 ) |
27 |
15 17 26
|
3jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) ) |
28 |
8
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ0 ) |
29 |
|
odzdvds |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) ∧ ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ0 ) → ( 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
30 |
27 28 29
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
31 |
12 30
|
bitrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ↔ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
32 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
33 |
5 32
|
nn0expcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℕ0 ) |
34 |
3 33
|
nnexpcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℕ ) |
35 |
34
|
nnzd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ) |
36 |
|
modprm1div |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = 1 ↔ 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) − 1 ) ) ) |
37 |
1 35 36
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = 1 ↔ 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) − 1 ) ) ) |
38 |
33
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ↑ 𝑁 ) ∈ ℕ0 ) |
39 |
|
odzdvds |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) ∧ ( 2 ↑ 𝑁 ) ∈ ℕ0 ) → ( 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) ) ) |
40 |
27 38 39
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) ) ) |
41 |
37 40
|
bitrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = 1 ↔ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) ) ) |
42 |
41
|
necon3abid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 ↔ ¬ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) ) ) |
43 |
|
odzcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∈ ℕ ) |
44 |
27 43
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∈ ℕ ) |
45 |
7
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
46 |
|
dvdsprmpweqle |
⊢ ( ( 2 ∈ ℙ ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∈ ℕ ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ ( 𝑁 + 1 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ ( 𝑁 + 1 ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) ) ) |
47 |
22 44 45 46
|
mp3an2i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ ( 𝑁 + 1 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ ( 𝑁 + 1 ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) ) ) |
48 |
|
breq1 |
⊢ ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) ↔ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) ) ) |
49 |
48
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) ↔ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) ) ) |
50 |
49
|
notbid |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) → ( ¬ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) ↔ ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) ) ) |
51 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) |
52 |
51
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) ∧ ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) |
53 |
|
nn0re |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) |
54 |
6
|
nnred |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
55 |
54
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
56 |
|
leloe |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℝ ) → ( 𝑛 ≤ ( 𝑁 + 1 ) ↔ ( 𝑛 < ( 𝑁 + 1 ) ∨ 𝑛 = ( 𝑁 + 1 ) ) ) ) |
57 |
53 55 56
|
syl2anr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ≤ ( 𝑁 + 1 ) ↔ ( 𝑛 < ( 𝑁 + 1 ) ∨ 𝑛 = ( 𝑁 + 1 ) ) ) ) |
58 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
59 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
60 |
59
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℤ ) |
61 |
60
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 < ( 𝑁 + 1 ) ) → 𝑛 ∈ ℤ ) |
62 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
63 |
62
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑁 ∈ ℤ ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
65 |
64
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 < ( 𝑁 + 1 ) ) → 𝑁 ∈ ℤ ) |
66 |
|
zleltp1 |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑛 ≤ 𝑁 ↔ 𝑛 < ( 𝑁 + 1 ) ) ) |
67 |
59 63 66
|
syl2anr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ≤ 𝑁 ↔ 𝑛 < ( 𝑁 + 1 ) ) ) |
68 |
67
|
biimpar |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 < ( 𝑁 + 1 ) ) → 𝑛 ≤ 𝑁 ) |
69 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ↔ ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑛 ≤ 𝑁 ) ) |
70 |
61 65 68 69
|
syl3anbrc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 < ( 𝑁 + 1 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
71 |
|
dvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) ) |
72 |
16 58 70 71
|
mp3an2ani |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 < ( 𝑁 + 1 ) ) → ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) ) |
73 |
72
|
pm2.24d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 < ( 𝑁 + 1 ) ) → ( ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
74 |
73
|
expcom |
⊢ ( 𝑛 < ( 𝑁 + 1 ) → ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
75 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
76 |
75
|
2a1d |
⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
77 |
74 76
|
jaoi |
⊢ ( ( 𝑛 < ( 𝑁 + 1 ) ∨ 𝑛 = ( 𝑁 + 1 ) ) → ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
78 |
77
|
com12 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 < ( 𝑁 + 1 ) ∨ 𝑛 = ( 𝑁 + 1 ) ) → ( ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
79 |
57 78
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ≤ ( 𝑁 + 1 ) → ( ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
80 |
79
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) → ( ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
81 |
80
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) → ( ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
82 |
81
|
imp |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) ∧ ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
83 |
52 82
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) ∧ ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
84 |
83
|
ex |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) → ( ¬ ( 2 ↑ 𝑛 ) ∥ ( 2 ↑ 𝑁 ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
85 |
50 84
|
sylbid |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ≤ ( 𝑁 + 1 ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) → ( ¬ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
86 |
85
|
expl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ≤ ( 𝑁 + 1 ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) → ( ¬ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
87 |
86
|
rexlimdva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ ( 𝑁 + 1 ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ 𝑛 ) ) → ( ¬ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
88 |
47 87
|
syld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ ( 𝑁 + 1 ) ) → ( ¬ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
89 |
88
|
com23 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ¬ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ 𝑁 ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ ( 𝑁 + 1 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
90 |
42 89
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ ( 𝑁 + 1 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
91 |
90
|
com23 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 2 ↑ ( 𝑁 + 1 ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
92 |
31 91
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
93 |
92
|
com23 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 → ( ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
94 |
93
|
imp32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |