| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℤ ) |
| 2 |
|
uznn0sub |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 3 |
2
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 4 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ∈ ℤ ) |
| 5 |
1 3 4
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ∈ ℤ ) |
| 6 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) |
| 8 |
|
dvdsmul2 |
⊢ ( ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ∈ ℤ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) → ( 𝐴 ↑ 𝑀 ) ∥ ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∥ ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 10 |
1
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℂ ) |
| 11 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℕ0 ) |
| 12 |
10 11 3
|
expaddd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 13 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℂ ) |
| 14 |
13
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℂ ) |
| 15 |
11
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℂ ) |
| 16 |
14 15
|
npcand |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑁 − 𝑀 ) + 𝑀 ) = 𝑁 ) |
| 17 |
16
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 18 |
12 17
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) · ( 𝐴 ↑ 𝑀 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 19 |
9 18
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |