| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℕ ) | 
						
							| 4 | 3 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 5 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | fmtno | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( FermatNo ‘ 𝑁 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 8 | 7 | breq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  ↔  𝑃  ∥  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  ↔  𝑃  ∥  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  𝑃  ∥  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 11 |  | dvdsmod0 | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑃  ∥  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0 ) | 
						
							| 12 | 4 10 11 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0 ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0 ) ) | 
						
							| 14 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 16 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 18 | 17 5 | nn0expcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 19 | 15 18 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℕ ) | 
						
							| 20 | 19 | nnzd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ ) | 
						
							| 22 |  | 1zzd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  1  ∈  ℤ ) | 
						
							| 23 | 3 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  𝑃  ∈  ℕ ) | 
						
							| 24 |  | summodnegmod | ⊢ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  ↔  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 25 | 21 22 23 24 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  ↔  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 26 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 27 | 21 26 | jctir | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ  ∧  - 1  ∈  ℤ ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ  ∧  - 1  ∈  ℤ ) ) | 
						
							| 29 | 2 | nnrpd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ+ ) | 
						
							| 30 | 1 29 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℝ+ ) | 
						
							| 31 | 17 30 | anim12i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2  ∈  ℕ0  ∧  𝑃  ∈  ℝ+ ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( 2  ∈  ℕ0  ∧  𝑃  ∈  ℝ+ ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 34 |  | modexp | ⊢ ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ  ∧  - 1  ∈  ℤ )  ∧  ( 2  ∈  ℕ0  ∧  𝑃  ∈  ℝ+ )  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 )  mod  𝑃 )  =  ( ( - 1 ↑ 2 )  mod  𝑃 ) ) | 
						
							| 35 | 28 32 33 34 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 )  mod  𝑃 )  =  ( ( - 1 ↑ 2 )  mod  𝑃 ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 )  mod  𝑃 )  =  ( ( - 1 ↑ 2 )  mod  𝑃 ) ) ) | 
						
							| 37 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 38 | 37 18 17 | 3jca | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ∈  ℂ  ∧  ( 2 ↑ 𝑁 )  ∈  ℕ0  ∧  2  ∈  ℕ0 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2  ∈  ℂ  ∧  ( 2 ↑ 𝑁 )  ∈  ℕ0  ∧  2  ∈  ℕ0 ) ) | 
						
							| 40 |  | expmul | ⊢ ( ( 2  ∈  ℂ  ∧  ( 2 ↑ 𝑁 )  ∈  ℕ0  ∧  2  ∈  ℕ0 )  →  ( 2 ↑ ( ( 2 ↑ 𝑁 )  ·  2 ) )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2 ↑ ( ( 2 ↑ 𝑁 )  ·  2 ) )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) | 
						
							| 42 |  | 2cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  2  ∈  ℂ ) | 
						
							| 43 | 5 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 44 | 42 43 | expp1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2 ↑ ( 𝑁  +  1 ) )  =  ( ( 2 ↑ 𝑁 )  ·  2 ) ) | 
						
							| 45 | 44 | eqcomd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 2 ↑ 𝑁 )  ·  2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2 ↑ ( ( 2 ↑ 𝑁 )  ·  2 ) )  =  ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 47 | 41 46 | eqtr3d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 )  =  ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 )  mod  𝑃 )  =  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 ) ) | 
						
							| 49 |  | neg1sqe1 | ⊢ ( - 1 ↑ 2 )  =  1 | 
						
							| 50 | 49 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( - 1 ↑ 2 )  =  1 ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( - 1 ↑ 2 )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 52 | 3 | nnred | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℝ ) | 
						
							| 53 |  | prmgt1 | ⊢ ( 𝑃  ∈  ℙ  →  1  <  𝑃 ) | 
						
							| 54 | 1 53 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  1  <  𝑃 ) | 
						
							| 55 |  | 1mod | ⊢ ( ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 56 | 52 54 55 | syl2anc | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 58 | 51 57 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( - 1 ↑ 2 )  mod  𝑃 )  =  1 ) | 
						
							| 59 | 48 58 | eqeq12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 )  mod  𝑃 )  =  ( ( - 1 ↑ 2 )  mod  𝑃 )  ↔  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 ) ) | 
						
							| 60 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  ∧  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0 )  →  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 61 | 20 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ ) | 
						
							| 62 |  | 1zzd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  →  1  ∈  ℤ ) | 
						
							| 63 | 2 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  →  𝑃  ∈  ℕ ) | 
						
							| 64 | 61 62 63 | 3jca | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑃  ∈  ℕ ) ) | 
						
							| 65 | 1 64 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑃  ∈  ℕ ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑃  ∈  ℕ ) ) | 
						
							| 67 | 66 24 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  ↔  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 68 |  | m1modnnsub1 | ⊢ ( 𝑃  ∈  ℕ  →  ( - 1  mod  𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 69 | 23 68 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( - 1  mod  𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 70 |  | eldifsni | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ≠  2 ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  𝑃  ≠  2 ) | 
						
							| 72 | 71 | necomd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  2  ≠  𝑃 ) | 
						
							| 73 | 3 | nncnd | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℂ ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  𝑃  ∈  ℂ ) | 
						
							| 75 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  1  ∈  ℂ ) | 
						
							| 76 | 74 75 75 | subadd2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 𝑃  −  1 )  =  1  ↔  ( 1  +  1 )  =  𝑃 ) ) | 
						
							| 77 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 78 | 77 | eqeq1i | ⊢ ( ( 1  +  1 )  =  𝑃  ↔  2  =  𝑃 ) | 
						
							| 79 | 76 78 | bitrdi | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 𝑃  −  1 )  =  1  ↔  2  =  𝑃 ) ) | 
						
							| 80 | 79 | necon3bid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 𝑃  −  1 )  ≠  1  ↔  2  ≠  𝑃 ) ) | 
						
							| 81 | 72 80 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃  −  1 )  ≠  1 ) | 
						
							| 82 | 69 81 | eqnetrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( - 1  mod  𝑃 )  ≠  1 ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  →  ( - 1  mod  𝑃 )  ≠  1 ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( - 1  mod  𝑃 )  ≠  1 ) | 
						
							| 85 |  | eqeq1 | ⊢ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  1  ↔  ( - 1  mod  𝑃 )  =  1 ) ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  1  ↔  ( - 1  mod  𝑃 )  =  1 ) ) | 
						
							| 87 | 86 | necon3bid | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1  ↔  ( - 1  mod  𝑃 )  ≠  1 ) ) | 
						
							| 88 | 84 87 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1 ) | 
						
							| 89 | 88 | ex | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1 ) ) | 
						
							| 90 | 67 89 | sylbid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1 ) ) | 
						
							| 91 | 90 | imp | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  ∧  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0 )  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1 ) | 
						
							| 92 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  ∧  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0 )  →  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 ) | 
						
							| 93 |  | odz2prm2pw | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  ≠  1  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 94 | 60 91 92 93 | syl12anc | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  ∧  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 95 | 94 | ex | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1 )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 96 | 95 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  mod  𝑃 )  =  1  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 97 | 59 96 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 )  mod  𝑃 )  =  ( ( - 1 ↑ 2 )  mod  𝑃 )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 98 | 36 97 | syld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 99 | 25 98 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 100 | 99 | pm2.43d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  mod  𝑃 )  =  0  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 101 | 13 100 | syld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 102 | 101 | 3impia | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) |