| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
| 2 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℕ ) |
| 4 |
3
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → 𝑃 ∈ ℕ ) |
| 5 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 6 |
|
fmtno |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
| 8 |
7
|
breq2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ↔ 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ↔ 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) ) |
| 10 |
9
|
biimpa |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
| 11 |
|
dvdsmod0 |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ∥ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ) |
| 12 |
4 10 11
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ) |
| 13 |
12
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ) ) |
| 14 |
|
2nn |
⊢ 2 ∈ ℕ |
| 15 |
14
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
| 16 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 17 |
16
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ0 ) |
| 18 |
17 5
|
nn0expcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℕ0 ) |
| 19 |
15 18
|
nnexpcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℕ ) |
| 20 |
19
|
nnzd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ) |
| 22 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 1 ∈ ℤ ) |
| 23 |
3
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑃 ∈ ℕ ) |
| 24 |
|
summodnegmod |
⊢ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ↔ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) ) |
| 25 |
21 22 23 24
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ↔ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) ) |
| 26 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 27 |
21 26
|
jctir |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ∧ - 1 ∈ ℤ ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ∧ - 1 ∈ ℤ ) ) |
| 29 |
2
|
nnrpd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ+ ) |
| 30 |
1 29
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℝ+ ) |
| 31 |
17 30
|
anim12i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ∈ ℕ0 ∧ 𝑃 ∈ ℝ+ ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) → ( 2 ∈ ℕ0 ∧ 𝑃 ∈ ℝ+ ) ) |
| 33 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) |
| 34 |
|
modexp |
⊢ ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ∧ - 1 ∈ ℤ ) ∧ ( 2 ∈ ℕ0 ∧ 𝑃 ∈ ℝ+ ) ∧ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) mod 𝑃 ) = ( ( - 1 ↑ 2 ) mod 𝑃 ) ) |
| 35 |
28 32 33 34
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) mod 𝑃 ) = ( ( - 1 ↑ 2 ) mod 𝑃 ) ) |
| 36 |
35
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) mod 𝑃 ) = ( ( - 1 ↑ 2 ) mod 𝑃 ) ) ) |
| 37 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 38 |
37 18 17
|
3jca |
⊢ ( 𝑁 ∈ ℕ → ( 2 ∈ ℂ ∧ ( 2 ↑ 𝑁 ) ∈ ℕ0 ∧ 2 ∈ ℕ0 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ∈ ℂ ∧ ( 2 ↑ 𝑁 ) ∈ ℕ0 ∧ 2 ∈ ℕ0 ) ) |
| 40 |
|
expmul |
⊢ ( ( 2 ∈ ℂ ∧ ( 2 ↑ 𝑁 ) ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 2 ↑ ( ( 2 ↑ 𝑁 ) · 2 ) ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) |
| 41 |
39 40
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ↑ ( ( 2 ↑ 𝑁 ) · 2 ) ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) |
| 42 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 2 ∈ ℂ ) |
| 43 |
5
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑁 ∈ ℕ0 ) |
| 44 |
42 43
|
expp1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 45 |
44
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( 2 ↑ 𝑁 ) · 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ↑ ( ( 2 ↑ 𝑁 ) · 2 ) ) = ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 47 |
41 46
|
eqtr3d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) = ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) mod 𝑃 ) = ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) ) |
| 49 |
|
neg1sqe1 |
⊢ ( - 1 ↑ 2 ) = 1 |
| 50 |
49
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( - 1 ↑ 2 ) = 1 ) |
| 51 |
50
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( - 1 ↑ 2 ) mod 𝑃 ) = ( 1 mod 𝑃 ) ) |
| 52 |
3
|
nnred |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℝ ) |
| 53 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
| 54 |
1 53
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 1 < 𝑃 ) |
| 55 |
|
1mod |
⊢ ( ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) → ( 1 mod 𝑃 ) = 1 ) |
| 56 |
52 54 55
|
syl2anc |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 1 mod 𝑃 ) = 1 ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 1 mod 𝑃 ) = 1 ) |
| 58 |
51 57
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( - 1 ↑ 2 ) mod 𝑃 ) = 1 ) |
| 59 |
48 58
|
eqeq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) mod 𝑃 ) = ( ( - 1 ↑ 2 ) mod 𝑃 ) ↔ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ) |
| 60 |
|
simpll |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ∧ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ) → ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ) |
| 61 |
20
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ) |
| 62 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 1 ∈ ℤ ) |
| 63 |
2
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℕ ) |
| 64 |
61 62 63
|
3jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ ) ) |
| 65 |
1 64
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ ) ) |
| 67 |
66 24
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ↔ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) ) |
| 68 |
|
m1modnnsub1 |
⊢ ( 𝑃 ∈ ℕ → ( - 1 mod 𝑃 ) = ( 𝑃 − 1 ) ) |
| 69 |
23 68
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( - 1 mod 𝑃 ) = ( 𝑃 − 1 ) ) |
| 70 |
|
eldifsni |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ≠ 2 ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑃 ≠ 2 ) |
| 72 |
71
|
necomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 2 ≠ 𝑃 ) |
| 73 |
3
|
nncnd |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℂ ) |
| 74 |
73
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑃 ∈ ℂ ) |
| 75 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 1 ∈ ℂ ) |
| 76 |
74 75 75
|
subadd2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( 𝑃 − 1 ) = 1 ↔ ( 1 + 1 ) = 𝑃 ) ) |
| 77 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 78 |
77
|
eqeq1i |
⊢ ( ( 1 + 1 ) = 𝑃 ↔ 2 = 𝑃 ) |
| 79 |
76 78
|
bitrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( 𝑃 − 1 ) = 1 ↔ 2 = 𝑃 ) ) |
| 80 |
79
|
necon3bid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( 𝑃 − 1 ) ≠ 1 ↔ 2 ≠ 𝑃 ) ) |
| 81 |
72 80
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 − 1 ) ≠ 1 ) |
| 82 |
69 81
|
eqnetrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( - 1 mod 𝑃 ) ≠ 1 ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) → ( - 1 mod 𝑃 ) ≠ 1 ) |
| 84 |
83
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ∧ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) → ( - 1 mod 𝑃 ) ≠ 1 ) |
| 85 |
|
eqeq1 |
⊢ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = 1 ↔ ( - 1 mod 𝑃 ) = 1 ) ) |
| 86 |
85
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ∧ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = 1 ↔ ( - 1 mod 𝑃 ) = 1 ) ) |
| 87 |
86
|
necon3bid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ∧ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 ↔ ( - 1 mod 𝑃 ) ≠ 1 ) ) |
| 88 |
84 87
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ∧ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 ) |
| 89 |
88
|
ex |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 ) ) |
| 90 |
67 89
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 ) ) |
| 91 |
90
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ∧ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ) → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 ) |
| 92 |
|
simplr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ∧ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ) → ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) |
| 93 |
|
odz2prm2pw |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) ≠ 1 ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 94 |
60 91 92 93
|
syl12anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) ∧ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 95 |
94
|
ex |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ∧ ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 96 |
95
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) mod 𝑃 ) = 1 → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 97 |
59 96
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) mod 𝑃 ) = ( ( - 1 ↑ 2 ) mod 𝑃 ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 98 |
36 97
|
syld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 99 |
25 98
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 100 |
99
|
pm2.43d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) mod 𝑃 ) = 0 → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 101 |
13 100
|
syld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 102 |
101
|
3impia |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |