| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
|
nnrp |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ+ ) |
| 3 |
|
negmod |
⊢ ( ( 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( - 1 mod 𝑀 ) = ( ( 𝑀 − 1 ) mod 𝑀 ) ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( 𝑀 ∈ ℕ → ( - 1 mod 𝑀 ) = ( ( 𝑀 − 1 ) mod 𝑀 ) ) |
| 5 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 6 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℝ ) |
| 8 |
|
nnm1ge0 |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ ( 𝑀 − 1 ) ) |
| 9 |
5
|
ltm1d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) < 𝑀 ) |
| 10 |
|
modid |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) < 𝑀 ) ) → ( ( 𝑀 − 1 ) mod 𝑀 ) = ( 𝑀 − 1 ) ) |
| 11 |
7 2 8 9 10
|
syl22anc |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 − 1 ) mod 𝑀 ) = ( 𝑀 − 1 ) ) |
| 12 |
4 11
|
eqtrd |
⊢ ( 𝑀 ∈ ℕ → ( - 1 mod 𝑀 ) = ( 𝑀 − 1 ) ) |