| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  |-  1 e. RR | 
						
							| 2 |  | nnrp |  |-  ( M e. NN -> M e. RR+ ) | 
						
							| 3 |  | negmod |  |-  ( ( 1 e. RR /\ M e. RR+ ) -> ( -u 1 mod M ) = ( ( M - 1 ) mod M ) ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( M e. NN -> ( -u 1 mod M ) = ( ( M - 1 ) mod M ) ) | 
						
							| 5 |  | nnre |  |-  ( M e. NN -> M e. RR ) | 
						
							| 6 |  | peano2rem |  |-  ( M e. RR -> ( M - 1 ) e. RR ) | 
						
							| 7 | 5 6 | syl |  |-  ( M e. NN -> ( M - 1 ) e. RR ) | 
						
							| 8 |  | nnm1ge0 |  |-  ( M e. NN -> 0 <_ ( M - 1 ) ) | 
						
							| 9 | 5 | ltm1d |  |-  ( M e. NN -> ( M - 1 ) < M ) | 
						
							| 10 |  | modid |  |-  ( ( ( ( M - 1 ) e. RR /\ M e. RR+ ) /\ ( 0 <_ ( M - 1 ) /\ ( M - 1 ) < M ) ) -> ( ( M - 1 ) mod M ) = ( M - 1 ) ) | 
						
							| 11 | 7 2 8 9 10 | syl22anc |  |-  ( M e. NN -> ( ( M - 1 ) mod M ) = ( M - 1 ) ) | 
						
							| 12 | 4 11 | eqtrd |  |-  ( M e. NN -> ( -u 1 mod M ) = ( M - 1 ) ) |