| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|- 1 e. RR |
| 2 |
|
nnrp |
|- ( M e. NN -> M e. RR+ ) |
| 3 |
|
negmod |
|- ( ( 1 e. RR /\ M e. RR+ ) -> ( -u 1 mod M ) = ( ( M - 1 ) mod M ) ) |
| 4 |
1 2 3
|
sylancr |
|- ( M e. NN -> ( -u 1 mod M ) = ( ( M - 1 ) mod M ) ) |
| 5 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
| 6 |
|
peano2rem |
|- ( M e. RR -> ( M - 1 ) e. RR ) |
| 7 |
5 6
|
syl |
|- ( M e. NN -> ( M - 1 ) e. RR ) |
| 8 |
|
nnm1ge0 |
|- ( M e. NN -> 0 <_ ( M - 1 ) ) |
| 9 |
5
|
ltm1d |
|- ( M e. NN -> ( M - 1 ) < M ) |
| 10 |
|
modid |
|- ( ( ( ( M - 1 ) e. RR /\ M e. RR+ ) /\ ( 0 <_ ( M - 1 ) /\ ( M - 1 ) < M ) ) -> ( ( M - 1 ) mod M ) = ( M - 1 ) ) |
| 11 |
7 2 8 9 10
|
syl22anc |
|- ( M e. NN -> ( ( M - 1 ) mod M ) = ( M - 1 ) ) |
| 12 |
4 11
|
eqtrd |
|- ( M e. NN -> ( -u 1 mod M ) = ( M - 1 ) ) |