| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 2 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 3 |  | eluzle |  |-  ( M e. ( ZZ>= ` 3 ) -> 3 <_ M ) | 
						
							| 4 | 2 3 | eqbrtrid |  |-  ( M e. ( ZZ>= ` 3 ) -> ( 2 + 1 ) <_ M ) | 
						
							| 5 |  | 2z |  |-  2 e. ZZ | 
						
							| 6 |  | eluzelz |  |-  ( M e. ( ZZ>= ` 3 ) -> M e. ZZ ) | 
						
							| 7 |  | zltp1le |  |-  ( ( 2 e. ZZ /\ M e. ZZ ) -> ( 2 < M <-> ( 2 + 1 ) <_ M ) ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( M e. ( ZZ>= ` 3 ) -> ( 2 < M <-> ( 2 + 1 ) <_ M ) ) | 
						
							| 9 | 4 8 | mpbird |  |-  ( M e. ( ZZ>= ` 3 ) -> 2 < M ) | 
						
							| 10 | 1 9 | eqbrtrid |  |-  ( M e. ( ZZ>= ` 3 ) -> ( 1 + 1 ) < M ) | 
						
							| 11 |  | 1red |  |-  ( M e. ( ZZ>= ` 3 ) -> 1 e. RR ) | 
						
							| 12 |  | eluzelre |  |-  ( M e. ( ZZ>= ` 3 ) -> M e. RR ) | 
						
							| 13 | 11 11 12 | ltaddsub2d |  |-  ( M e. ( ZZ>= ` 3 ) -> ( ( 1 + 1 ) < M <-> 1 < ( M - 1 ) ) ) | 
						
							| 14 | 10 13 | mpbid |  |-  ( M e. ( ZZ>= ` 3 ) -> 1 < ( M - 1 ) ) | 
						
							| 15 |  | eluzge3nn |  |-  ( M e. ( ZZ>= ` 3 ) -> M e. NN ) | 
						
							| 16 |  | m1modnnsub1 |  |-  ( M e. NN -> ( -u 1 mod M ) = ( M - 1 ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( M e. ( ZZ>= ` 3 ) -> ( -u 1 mod M ) = ( M - 1 ) ) | 
						
							| 18 | 14 17 | breqtrrd |  |-  ( M e. ( ZZ>= ` 3 ) -> 1 < ( -u 1 mod M ) ) |