| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpcn |  |-  ( N e. RR+ -> N e. CC ) | 
						
							| 2 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 3 |  | negsub |  |-  ( ( N e. CC /\ A e. CC ) -> ( N + -u A ) = ( N - A ) ) | 
						
							| 4 | 1 2 3 | syl2anr |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( N + -u A ) = ( N - A ) ) | 
						
							| 5 | 4 | eqcomd |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( N - A ) = ( N + -u A ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( N - A ) mod N ) = ( ( N + -u A ) mod N ) ) | 
						
							| 7 | 1 | mullidd |  |-  ( N e. RR+ -> ( 1 x. N ) = N ) | 
						
							| 8 | 7 | adantl |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( 1 x. N ) = N ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( 1 x. N ) + -u A ) = ( N + -u A ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( ( 1 x. N ) + -u A ) mod N ) = ( ( N + -u A ) mod N ) ) | 
						
							| 11 |  | 1cnd |  |-  ( A e. RR -> 1 e. CC ) | 
						
							| 12 |  | mulcl |  |-  ( ( 1 e. CC /\ N e. CC ) -> ( 1 x. N ) e. CC ) | 
						
							| 13 | 11 1 12 | syl2an |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( 1 x. N ) e. CC ) | 
						
							| 14 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( A e. RR -> -u A e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. RR /\ N e. RR+ ) -> -u A e. CC ) | 
						
							| 17 | 13 16 | addcomd |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( 1 x. N ) + -u A ) = ( -u A + ( 1 x. N ) ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( ( 1 x. N ) + -u A ) mod N ) = ( ( -u A + ( 1 x. N ) ) mod N ) ) | 
						
							| 19 | 14 | adantr |  |-  ( ( A e. RR /\ N e. RR+ ) -> -u A e. RR ) | 
						
							| 20 |  | simpr |  |-  ( ( A e. RR /\ N e. RR+ ) -> N e. RR+ ) | 
						
							| 21 |  | 1zzd |  |-  ( ( A e. RR /\ N e. RR+ ) -> 1 e. ZZ ) | 
						
							| 22 |  | modcyc |  |-  ( ( -u A e. RR /\ N e. RR+ /\ 1 e. ZZ ) -> ( ( -u A + ( 1 x. N ) ) mod N ) = ( -u A mod N ) ) | 
						
							| 23 | 19 20 21 22 | syl3anc |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( -u A + ( 1 x. N ) ) mod N ) = ( -u A mod N ) ) | 
						
							| 24 | 18 23 | eqtrd |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( ( 1 x. N ) + -u A ) mod N ) = ( -u A mod N ) ) | 
						
							| 25 | 6 10 24 | 3eqtr2rd |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( -u A mod N ) = ( ( N - A ) mod N ) ) |