| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 | ⊢ ( 𝑃  =  2  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  ↔  2  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ℕ )  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  ↔  2  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 3 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | fmtnoodd | ⊢ ( 𝑁  ∈  ℕ0  →  ¬  2  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ¬  2  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ℕ )  →  ¬  2  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 7 | 6 | pm2.21d | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ℕ )  →  ( 2  ∥  ( FermatNo ‘ 𝑁 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 8 | 2 7 | sylbid | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ℕ )  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 9 | 8 | a1d | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ℕ )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝑃  =  2  →  ( 𝑁  ∈  ℕ  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) ) ) | 
						
							| 11 | 10 | 3impd | ⊢ ( 𝑃  =  2  →  ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 12 |  | simpr1 | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 13 |  | neqne | ⊢ ( ¬  𝑃  =  2  →  𝑃  ≠  2 ) | 
						
							| 14 | 13 | anim2i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 15 |  | eldifsn | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝑃  ∈  ℙ  →  ( ¬  𝑃  =  2  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ¬  𝑃  =  2  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 19 | 18 | impcom | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 20 |  | simpr3 | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 21 |  | fmtnoprmfac1lem | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 22 | 12 19 20 21 | syl3anc | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 23 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 24 | 23 | ad2antll | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  𝑃  ∈  ℕ ) | 
						
							| 25 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 26 | 25 | a1i | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  2  ∈  ℤ ) | 
						
							| 27 | 13 | necomd | ⊢ ( ¬  𝑃  =  2  →  2  ≠  𝑃 ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  2  ≠  𝑃 ) | 
						
							| 29 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 30 | 29 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℙ ) | 
						
							| 31 | 30 | anim1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  →  ( 2  ∈  ℙ  ∧  𝑃  ∈  ℙ ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( 2  ∈  ℙ  ∧  𝑃  ∈  ℙ ) ) | 
						
							| 33 |  | prmrp | ⊢ ( ( 2  ∈  ℙ  ∧  𝑃  ∈  ℙ )  →  ( ( 2  gcd  𝑃 )  =  1  ↔  2  ≠  𝑃 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( 2  gcd  𝑃 )  =  1  ↔  2  ≠  𝑃 ) ) | 
						
							| 35 | 28 34 | mpbird | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( 2  gcd  𝑃 )  =  1 ) | 
						
							| 36 |  | odzphi | ⊢ ( ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ϕ ‘ 𝑃 ) ) | 
						
							| 37 | 24 26 35 36 | syl3anc | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ϕ ‘ 𝑃 ) ) | 
						
							| 38 |  | phiprm | ⊢ ( 𝑃  ∈  ℙ  →  ( ϕ ‘ 𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 39 | 38 | ad2antll | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ϕ ‘ 𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 40 | 39 | breq2d | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ϕ ‘ 𝑃 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 𝑃  −  1 ) ) ) | 
						
							| 41 |  | breq1 | ⊢ ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 𝑃  −  1 )  ↔  ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( 𝑃  −  1 ) ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 𝑃  −  1 )  ↔  ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( 𝑃  −  1 ) ) ) | 
						
							| 43 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 44 | 43 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 45 |  | peano2nn | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 46 | 45 | nnnn0d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 47 | 44 46 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ ) | 
						
							| 48 | 23 | nnnn0d | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ0 ) | 
						
							| 49 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 50 |  | eluzle | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  2  ≤  𝑃 ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝑃  ∈  ℙ  →  2  ≤  𝑃 ) | 
						
							| 52 |  | nn0ge2m1nn | ⊢ ( ( 𝑃  ∈  ℕ0  ∧  2  ≤  𝑃 )  →  ( 𝑃  −  1 )  ∈  ℕ ) | 
						
							| 53 | 48 51 52 | syl2anc | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  −  1 )  ∈  ℕ ) | 
						
							| 54 | 47 53 | anim12i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ  ∧  ( 𝑃  −  1 )  ∈  ℕ ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ  ∧  ( 𝑃  −  1 )  ∈  ℕ ) ) | 
						
							| 56 |  | nndivides | ⊢ ( ( ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ  ∧  ( 𝑃  −  1 )  ∈  ℕ )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( 𝑃  −  1 )  ↔  ∃ 𝑘  ∈  ℕ ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( 𝑃  −  1 ) ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( 𝑃  −  1 )  ↔  ∃ 𝑘  ∈  ℕ ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( 𝑃  −  1 ) ) ) | 
						
							| 58 |  | eqcom | ⊢ ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( 𝑃  −  1 )  ↔  ( 𝑃  −  1 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 59 | 58 | a1i | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( 𝑃  −  1 )  ↔  ( 𝑃  −  1 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 60 | 23 | nncnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  →  𝑃  ∈  ℂ ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  𝑃  ∈  ℂ ) | 
						
							| 63 |  | 1cnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 64 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 66 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 67 | 3 66 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 68 | 44 67 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ ) | 
						
							| 69 | 68 | nncnd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 72 | 65 71 | mulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ∈  ℂ ) | 
						
							| 73 | 62 63 72 | subadd2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃  −  1 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ↔  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  =  𝑃 ) ) | 
						
							| 74 | 73 | adantll | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃  −  1 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ↔  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  =  𝑃 ) ) | 
						
							| 75 |  | eqcom | ⊢ ( ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  =  𝑃  ↔  𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) | 
						
							| 76 | 75 | a1i | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  =  𝑃  ↔  𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 77 | 59 74 76 | 3bitrd | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( 𝑃  −  1 )  ↔  𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 78 | 77 | rexbidva | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ∃ 𝑘  ∈  ℕ ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( 𝑃  −  1 )  ↔  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 79 | 78 | biimpd | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ∃ 𝑘  ∈  ℕ ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( 𝑃  −  1 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 80 | 57 79 | sylbid | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( 𝑃  −  1 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( 𝑃  −  1 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 82 | 42 81 | sylbid | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 𝑃  −  1 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 83 | 82 | ex | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 𝑃  −  1 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) ) | 
						
							| 84 | 83 | com23 | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( 𝑃  −  1 )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) ) | 
						
							| 85 | 40 84 | sylbid | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ϕ ‘ 𝑃 )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) ) | 
						
							| 86 | 37 85 | mpd | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 87 | 86 | 3adantr3 | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 88 | 22 87 | mpd | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) | 
						
							| 89 | 88 | ex | ⊢ ( ¬  𝑃  =  2  →  ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) ) | 
						
							| 90 | 11 89 | pm2.61i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) |