| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( 𝑃 = 2 → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ↔ 2 ∥ ( FermatNo ‘ 𝑁 ) ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ↔ 2 ∥ ( FermatNo ‘ 𝑁 ) ) ) |
| 3 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 4 |
|
fmtnoodd |
⊢ ( 𝑁 ∈ ℕ0 → ¬ 2 ∥ ( FermatNo ‘ 𝑁 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑁 ∈ ℕ → ¬ 2 ∥ ( FermatNo ‘ 𝑁 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ℕ ) → ¬ 2 ∥ ( FermatNo ‘ 𝑁 ) ) |
| 7 |
6
|
pm2.21d |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ℕ ) → ( 2 ∥ ( FermatNo ‘ 𝑁 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 8 |
2 7
|
sylbid |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 9 |
8
|
a1d |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) ) |
| 10 |
9
|
ex |
⊢ ( 𝑃 = 2 → ( 𝑁 ∈ ℕ → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) ) ) |
| 11 |
10
|
3impd |
⊢ ( 𝑃 = 2 → ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 12 |
|
simpr1 |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 13 |
|
neqne |
⊢ ( ¬ 𝑃 = 2 → 𝑃 ≠ 2 ) |
| 14 |
13
|
anim2i |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
| 15 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
| 16 |
14 15
|
sylibr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
| 17 |
16
|
ex |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 𝑃 = 2 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ) |
| 18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ¬ 𝑃 = 2 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ) |
| 19 |
18
|
impcom |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
| 20 |
|
simpr3 |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) |
| 21 |
|
fmtnoprmfac1lem |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 22 |
12 19 20 21
|
syl3anc |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 23 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 24 |
23
|
ad2antll |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → 𝑃 ∈ ℕ ) |
| 25 |
|
2z |
⊢ 2 ∈ ℤ |
| 26 |
25
|
a1i |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → 2 ∈ ℤ ) |
| 27 |
13
|
necomd |
⊢ ( ¬ 𝑃 = 2 → 2 ≠ 𝑃 ) |
| 28 |
27
|
adantr |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → 2 ≠ 𝑃 ) |
| 29 |
|
2prm |
⊢ 2 ∈ ℙ |
| 30 |
29
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℙ ) |
| 31 |
30
|
anim1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 ∈ ℙ ∧ 𝑃 ∈ ℙ ) ) |
| 32 |
31
|
adantl |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( 2 ∈ ℙ ∧ 𝑃 ∈ ℙ ) ) |
| 33 |
|
prmrp |
⊢ ( ( 2 ∈ ℙ ∧ 𝑃 ∈ ℙ ) → ( ( 2 gcd 𝑃 ) = 1 ↔ 2 ≠ 𝑃 ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( 2 gcd 𝑃 ) = 1 ↔ 2 ≠ 𝑃 ) ) |
| 35 |
28 34
|
mpbird |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( 2 gcd 𝑃 ) = 1 ) |
| 36 |
|
odzphi |
⊢ ( ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ϕ ‘ 𝑃 ) ) |
| 37 |
24 26 35 36
|
syl3anc |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ϕ ‘ 𝑃 ) ) |
| 38 |
|
phiprm |
⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |
| 39 |
38
|
ad2antll |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |
| 40 |
39
|
breq2d |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ϕ ‘ 𝑃 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 𝑃 − 1 ) ) ) |
| 41 |
|
breq1 |
⊢ ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 𝑃 − 1 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( 𝑃 − 1 ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 𝑃 − 1 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( 𝑃 − 1 ) ) ) |
| 43 |
|
2nn |
⊢ 2 ∈ ℕ |
| 44 |
43
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
| 45 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
| 46 |
45
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 47 |
44 46
|
nnexpcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ ) |
| 48 |
23
|
nnnn0d |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 ) |
| 49 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 50 |
|
eluzle |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑃 ) |
| 51 |
49 50
|
syl |
⊢ ( 𝑃 ∈ ℙ → 2 ≤ 𝑃 ) |
| 52 |
|
nn0ge2m1nn |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 2 ≤ 𝑃 ) → ( 𝑃 − 1 ) ∈ ℕ ) |
| 53 |
48 51 52
|
syl2anc |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 − 1 ) ∈ ℕ ) |
| 54 |
47 53
|
anim12i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ ∧ ( 𝑃 − 1 ) ∈ ℕ ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ ∧ ( 𝑃 − 1 ) ∈ ℕ ) ) |
| 56 |
|
nndivides |
⊢ ( ( ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ ∧ ( 𝑃 − 1 ) ∈ ℕ ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( 𝑃 − 1 ) ↔ ∃ 𝑘 ∈ ℕ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑃 − 1 ) ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( 𝑃 − 1 ) ↔ ∃ 𝑘 ∈ ℕ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑃 − 1 ) ) ) |
| 58 |
|
eqcom |
⊢ ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑃 − 1 ) ↔ ( 𝑃 − 1 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 59 |
58
|
a1i |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑃 − 1 ) ↔ ( 𝑃 − 1 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 60 |
23
|
nncnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℂ ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
| 63 |
|
1cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) |
| 64 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 65 |
64
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 66 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 67 |
3 66
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 68 |
44 67
|
nnexpcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ ) |
| 69 |
68
|
nncnd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 72 |
65 71
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
| 73 |
62 63 72
|
subadd2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 − 1 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ↔ ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) = 𝑃 ) ) |
| 74 |
73
|
adantll |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 − 1 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ↔ ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) = 𝑃 ) ) |
| 75 |
|
eqcom |
⊢ ( ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) = 𝑃 ↔ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) |
| 76 |
75
|
a1i |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) = 𝑃 ↔ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 77 |
59 74 76
|
3bitrd |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑃 − 1 ) ↔ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 78 |
77
|
rexbidva |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ∃ 𝑘 ∈ ℕ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑃 − 1 ) ↔ ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 79 |
78
|
biimpd |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ∃ 𝑘 ∈ ℕ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑃 − 1 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 80 |
57 79
|
sylbid |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( 𝑃 − 1 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 81 |
80
|
adantr |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( 𝑃 − 1 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 82 |
42 81
|
sylbid |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 𝑃 − 1 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 83 |
82
|
ex |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 𝑃 − 1 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) ) |
| 84 |
83
|
com23 |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( 𝑃 − 1 ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) ) |
| 85 |
40 84
|
sylbid |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ϕ ‘ 𝑃 ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) ) |
| 86 |
37 85
|
mpd |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 87 |
86
|
3adantr3 |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 88 |
22 87
|
mpd |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) |
| 89 |
88
|
ex |
⊢ ( ¬ 𝑃 = 2 → ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) ) |
| 90 |
11 89
|
pm2.61i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) |