| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | id | ⊢ ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  →  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 4 |  | fmtnoprmfac1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ 𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) | 
						
							| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ 𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) | 
						
							| 6 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 8 |  | lgsvalmod | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 2  /L  𝑃 )  mod  𝑃 )  =  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( ( 2  /L  𝑃 )  mod  𝑃 ) ) | 
						
							| 10 | 6 7 9 | sylancr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( ( 2  /L  𝑃 )  mod  𝑃 ) ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) )  →  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( ( 2  /L  𝑃 )  mod  𝑃 ) ) | 
						
							| 12 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℂ ) | 
						
							| 14 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ∈  ℕ ) | 
						
							| 16 |  | eluzge2nn0 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 17 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 19 | 15 18 | nnexpcld | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ ) | 
						
							| 20 | 19 | nncnd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 22 | 13 21 | mulcomd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( 2 ↑ ( 𝑁  +  1 ) )  ·  𝑛 ) ) | 
						
							| 23 |  | 8cn | ⊢ 8  ∈  ℂ | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  8  ∈  ℂ ) | 
						
							| 25 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 26 |  | 8pos | ⊢ 0  <  8 | 
						
							| 27 | 25 26 | gtneii | ⊢ 8  ≠  0 | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  8  ≠  0 ) | 
						
							| 29 | 21 24 28 | divcan2d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( 8  ·  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 ) )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( 2 ↑ ( 𝑁  +  1 ) )  =  ( 8  ·  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 ) ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ·  𝑛 )  =  ( ( 8  ·  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 ) )  ·  𝑛 ) ) | 
						
							| 32 | 23 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  8  ∈  ℂ ) | 
						
							| 33 | 27 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  8  ≠  0 ) | 
						
							| 34 | 20 32 33 | divcld | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ∈  ℂ ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ∈  ℂ ) | 
						
							| 36 | 24 35 13 | mulassd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( ( 8  ·  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 ) )  ·  𝑛 )  =  ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) ) ) | 
						
							| 37 | 22 31 36 | 3eqtrd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  =  ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 ) ) | 
						
							| 39 | 38 | eqeq2d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  ↔  𝑃  =  ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 ) ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑃  =  ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 )  →  ( 𝑃  mod  8 )  =  ( ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 )  mod  8 ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 ) )  →  ( 𝑃  mod  8 )  =  ( ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 )  mod  8 ) ) | 
						
							| 42 |  | 3m1e2 | ⊢ ( 3  −  1 )  =  2 | 
						
							| 43 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ≤  𝑁 ) | 
						
							| 44 | 42 43 | eqbrtrid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 3  −  1 )  ≤  𝑁 ) | 
						
							| 45 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 46 | 45 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  3  ∈  ℝ ) | 
						
							| 47 |  | 1red | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  1  ∈  ℝ ) | 
						
							| 48 |  | eluzelre | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℝ ) | 
						
							| 49 | 46 47 48 | lesubaddd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 3  −  1 )  ≤  𝑁  ↔  3  ≤  ( 𝑁  +  1 ) ) ) | 
						
							| 50 | 44 49 | mpbid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  3  ≤  ( 𝑁  +  1 ) ) | 
						
							| 51 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 52 |  | nn0sub | ⊢ ( ( 3  ∈  ℕ0  ∧  ( 𝑁  +  1 )  ∈  ℕ0 )  →  ( 3  ≤  ( 𝑁  +  1 )  ↔  ( ( 𝑁  +  1 )  −  3 )  ∈  ℕ0 ) ) | 
						
							| 53 | 51 18 52 | sylancr | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 3  ≤  ( 𝑁  +  1 )  ↔  ( ( 𝑁  +  1 )  −  3 )  ∈  ℕ0 ) ) | 
						
							| 54 | 50 53 | mpbid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑁  +  1 )  −  3 )  ∈  ℕ0 ) | 
						
							| 55 | 15 54 | nnexpcld | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) )  ∈  ℕ ) | 
						
							| 56 | 55 | nnzd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) )  ∈  ℤ ) | 
						
							| 57 |  | oveq2 | ⊢ ( 𝑘  =  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) )  →  ( 8  ·  𝑘 )  =  ( 8  ·  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) ) ) ) | 
						
							| 58 | 57 | eqeq1d | ⊢ ( 𝑘  =  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) )  →  ( ( 8  ·  𝑘 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  ↔  ( 8  ·  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) ) )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑘  =  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) ) )  →  ( ( 8  ·  𝑘 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  ↔  ( 8  ·  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) ) )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 60 |  | cu2 | ⊢ ( 2 ↑ 3 )  =  8 | 
						
							| 61 | 60 | eqcomi | ⊢ 8  =  ( 2 ↑ 3 ) | 
						
							| 62 | 61 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  8  =  ( 2 ↑ 3 ) ) | 
						
							| 63 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 64 | 63 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 65 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℤ ) | 
						
							| 66 | 65 | peano2zd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  +  1 )  ∈  ℤ ) | 
						
							| 67 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 68 | 67 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  3  ∈  ℤ ) | 
						
							| 69 |  | expsub | ⊢ ( ( ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( ( 𝑁  +  1 )  ∈  ℤ  ∧  3  ∈  ℤ ) )  →  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) )  =  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  ( 2 ↑ 3 ) ) ) | 
						
							| 70 | 64 66 68 69 | syl12anc | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) )  =  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  ( 2 ↑ 3 ) ) ) | 
						
							| 71 | 62 70 | oveq12d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 8  ·  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) ) )  =  ( ( 2 ↑ 3 )  ·  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  ( 2 ↑ 3 ) ) ) ) | 
						
							| 72 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  3  ∈  ℕ0 )  →  ( 2 ↑ 3 )  ∈  ℕ ) | 
						
							| 73 | 14 51 72 | mp2an | ⊢ ( 2 ↑ 3 )  ∈  ℕ | 
						
							| 74 | 73 | nncni | ⊢ ( 2 ↑ 3 )  ∈  ℂ | 
						
							| 75 | 74 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ 3 )  ∈  ℂ ) | 
						
							| 76 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 77 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 78 |  | expne0i | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  3  ∈  ℤ )  →  ( 2 ↑ 3 )  ≠  0 ) | 
						
							| 79 | 76 77 67 78 | mp3an | ⊢ ( 2 ↑ 3 )  ≠  0 | 
						
							| 80 | 79 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ 3 )  ≠  0 ) | 
						
							| 81 | 20 75 80 | divcan2d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 2 ↑ 3 )  ·  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  ( 2 ↑ 3 ) ) )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 82 | 71 81 | eqtrd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 8  ·  ( 2 ↑ ( ( 𝑁  +  1 )  −  3 ) ) )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 83 | 56 59 82 | rspcedvd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ∃ 𝑘  ∈  ℤ ( 8  ·  𝑘 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 84 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 85 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 86 | 85 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ∈  ℕ0 ) | 
						
							| 87 | 86 18 | nn0expcld | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ0 ) | 
						
							| 88 | 87 | nn0zd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℤ ) | 
						
							| 89 |  | zdiv | ⊢ ( ( 8  ∈  ℕ  ∧  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℤ )  →  ( ∃ 𝑘  ∈  ℤ ( 8  ·  𝑘 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  ↔  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ∈  ℤ ) ) | 
						
							| 90 | 84 88 89 | sylancr | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ∃ 𝑘  ∈  ℤ ( 8  ·  𝑘 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  ↔  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ∈  ℤ ) ) | 
						
							| 91 | 83 90 | mpbid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ∈  ℤ ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ∈  ℤ ) | 
						
							| 93 |  | nnz | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℤ ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℤ ) | 
						
							| 95 | 92 94 | zmulcld | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 )  ∈  ℤ ) | 
						
							| 96 | 84 | nnzi | ⊢ 8  ∈  ℤ | 
						
							| 97 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 98 |  | 8re | ⊢ 8  ∈  ℝ | 
						
							| 99 |  | 2lt8 | ⊢ 2  <  8 | 
						
							| 100 | 97 98 99 | ltleii | ⊢ 2  ≤  8 | 
						
							| 101 |  | eluz2 | ⊢ ( 8  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  8  ∈  ℤ  ∧  2  ≤  8 ) ) | 
						
							| 102 | 6 96 100 101 | mpbir3an | ⊢ 8  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 103 |  | mulp1mod1 | ⊢ ( ( ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 )  ∈  ℤ  ∧  8  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 )  mod  8 )  =  1 ) | 
						
							| 104 | 95 102 103 | sylancl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 )  mod  8 )  =  1 ) | 
						
							| 105 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 106 |  | prid1g | ⊢ ( 1  ∈  ℕ  →  1  ∈  { 1 ,  7 } ) | 
						
							| 107 | 105 106 | mp1i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  1  ∈  { 1 ,  7 } ) | 
						
							| 108 | 104 107 | eqeltrd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 )  mod  8 )  ∈  { 1 ,  7 } ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 ) )  →  ( ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 )  mod  8 )  ∈  { 1 ,  7 } ) | 
						
							| 110 | 41 109 | eqeltrd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 ) )  →  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) | 
						
							| 111 | 110 | ex | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃  =  ( ( 8  ·  ( ( ( 2 ↑ ( 𝑁  +  1 ) )  /  8 )  ·  𝑛 ) )  +  1 )  →  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 112 | 39 111 | sylbid | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  →  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 113 | 112 | 3ad2antl1 | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  →  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 114 | 113 | imp | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) )  →  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) | 
						
							| 115 |  | 2lgs | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 2  /L  𝑃 )  =  1  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 116 | 2 115 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 2  /L  𝑃 )  =  1  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 117 | 116 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( 2  /L  𝑃 )  =  1  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 118 | 117 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) )  →  ( ( 2  /L  𝑃 )  =  1  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 119 | 114 118 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) )  →  ( 2  /L  𝑃 )  =  1 ) | 
						
							| 120 | 119 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) )  →  ( ( 2  /L  𝑃 )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 121 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 122 |  | eluzelre | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  𝑃  ∈  ℝ ) | 
						
							| 123 |  | eluz2gt1 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  1  <  𝑃 ) | 
						
							| 124 | 122 123 | jca | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) ) | 
						
							| 125 |  | 1mod | ⊢ ( ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 126 | 2 121 124 125 | 4syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 127 | 126 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 128 | 127 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 129 | 11 120 128 | 3eqtrd | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) )  →  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  1 ) | 
						
							| 130 | 129 | rexlimdva2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ∃ 𝑛  ∈  ℕ 𝑃  =  ( ( 𝑛  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  →  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  1 ) ) | 
						
							| 131 | 5 130 | mpd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  1 ) |