| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
| 2 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
| 3 |
|
id |
⊢ ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) → 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) |
| 4 |
|
fmtnoprmfac1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) |
| 5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) |
| 6 |
|
2z |
⊢ 2 ∈ ℤ |
| 7 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
| 8 |
|
lgsvalmod |
⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( 2 /L 𝑃 ) mod 𝑃 ) = ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) ) |
| 9 |
8
|
eqcomd |
⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( ( 2 /L 𝑃 ) mod 𝑃 ) ) |
| 10 |
6 7 9
|
sylancr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( ( 2 /L 𝑃 ) mod 𝑃 ) ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) → ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( ( 2 /L 𝑃 ) mod 𝑃 ) ) |
| 12 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 14 |
|
2nn |
⊢ 2 ∈ ℕ |
| 15 |
14
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℕ ) |
| 16 |
|
eluzge2nn0 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ0 ) |
| 17 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 18 |
16 17
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 19 |
15 18
|
nnexpcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ ) |
| 20 |
19
|
nncnd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 22 |
13 21
|
mulcomd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 2 ↑ ( 𝑁 + 1 ) ) · 𝑛 ) ) |
| 23 |
|
8cn |
⊢ 8 ∈ ℂ |
| 24 |
23
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → 8 ∈ ℂ ) |
| 25 |
|
0re |
⊢ 0 ∈ ℝ |
| 26 |
|
8pos |
⊢ 0 < 8 |
| 27 |
25 26
|
gtneii |
⊢ 8 ≠ 0 |
| 28 |
27
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → 8 ≠ 0 ) |
| 29 |
21 24 28
|
divcan2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( 8 · ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 30 |
29
|
eqcomd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ ( 𝑁 + 1 ) ) = ( 8 · ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ) ) |
| 31 |
30
|
oveq1d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) · 𝑛 ) = ( ( 8 · ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ) · 𝑛 ) ) |
| 32 |
23
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 8 ∈ ℂ ) |
| 33 |
27
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 8 ≠ 0 ) |
| 34 |
20 32 33
|
divcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ∈ ℂ ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ∈ ℂ ) |
| 36 |
24 35 13
|
mulassd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( ( 8 · ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ) · 𝑛 ) = ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) ) |
| 37 |
22 31 36
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) ) |
| 38 |
37
|
oveq1d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) = ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) ) |
| 39 |
38
|
eqeq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ↔ 𝑃 = ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) ) ) |
| 40 |
|
oveq1 |
⊢ ( 𝑃 = ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) → ( 𝑃 mod 8 ) = ( ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) mod 8 ) ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) ) → ( 𝑃 mod 8 ) = ( ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) mod 8 ) ) |
| 42 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 43 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑁 ) |
| 44 |
42 43
|
eqbrtrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 3 − 1 ) ≤ 𝑁 ) |
| 45 |
|
3re |
⊢ 3 ∈ ℝ |
| 46 |
45
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 3 ∈ ℝ ) |
| 47 |
|
1red |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) |
| 48 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℝ ) |
| 49 |
46 47 48
|
lesubaddd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 3 − 1 ) ≤ 𝑁 ↔ 3 ≤ ( 𝑁 + 1 ) ) ) |
| 50 |
44 49
|
mpbid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 3 ≤ ( 𝑁 + 1 ) ) |
| 51 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 52 |
|
nn0sub |
⊢ ( ( 3 ∈ ℕ0 ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( 3 ≤ ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) − 3 ) ∈ ℕ0 ) ) |
| 53 |
51 18 52
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 3 ≤ ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) − 3 ) ∈ ℕ0 ) ) |
| 54 |
50 53
|
mpbid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 + 1 ) − 3 ) ∈ ℕ0 ) |
| 55 |
15 54
|
nnexpcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) ∈ ℕ ) |
| 56 |
55
|
nnzd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) ∈ ℤ ) |
| 57 |
|
oveq2 |
⊢ ( 𝑘 = ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) → ( 8 · 𝑘 ) = ( 8 · ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) ) ) |
| 58 |
57
|
eqeq1d |
⊢ ( 𝑘 = ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) → ( ( 8 · 𝑘 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ↔ ( 8 · ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑘 = ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) ) → ( ( 8 · 𝑘 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ↔ ( 8 · ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 60 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
| 61 |
60
|
eqcomi |
⊢ 8 = ( 2 ↑ 3 ) |
| 62 |
61
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 8 = ( 2 ↑ 3 ) ) |
| 63 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 64 |
63
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 65 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) |
| 66 |
65
|
peano2zd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 + 1 ) ∈ ℤ ) |
| 67 |
|
3z |
⊢ 3 ∈ ℤ |
| 68 |
67
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 3 ∈ ℤ ) |
| 69 |
|
expsub |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( ( 𝑁 + 1 ) ∈ ℤ ∧ 3 ∈ ℤ ) ) → ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) = ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 3 ) ) ) |
| 70 |
64 66 68 69
|
syl12anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) = ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 3 ) ) ) |
| 71 |
62 70
|
oveq12d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 8 · ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) ) = ( ( 2 ↑ 3 ) · ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 3 ) ) ) ) |
| 72 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 3 ∈ ℕ0 ) → ( 2 ↑ 3 ) ∈ ℕ ) |
| 73 |
14 51 72
|
mp2an |
⊢ ( 2 ↑ 3 ) ∈ ℕ |
| 74 |
73
|
nncni |
⊢ ( 2 ↑ 3 ) ∈ ℂ |
| 75 |
74
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ 3 ) ∈ ℂ ) |
| 76 |
|
2cn |
⊢ 2 ∈ ℂ |
| 77 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 78 |
|
expne0i |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 3 ∈ ℤ ) → ( 2 ↑ 3 ) ≠ 0 ) |
| 79 |
76 77 67 78
|
mp3an |
⊢ ( 2 ↑ 3 ) ≠ 0 |
| 80 |
79
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ 3 ) ≠ 0 ) |
| 81 |
20 75 80
|
divcan2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 ↑ 3 ) · ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 3 ) ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 82 |
71 81
|
eqtrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 8 · ( 2 ↑ ( ( 𝑁 + 1 ) − 3 ) ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 83 |
56 59 82
|
rspcedvd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑘 ∈ ℤ ( 8 · 𝑘 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 84 |
|
8nn |
⊢ 8 ∈ ℕ |
| 85 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 86 |
85
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℕ0 ) |
| 87 |
86 18
|
nn0expcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ0 ) |
| 88 |
87
|
nn0zd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℤ ) |
| 89 |
|
zdiv |
⊢ ( ( 8 ∈ ℕ ∧ ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℤ ) → ( ∃ 𝑘 ∈ ℤ ( 8 · 𝑘 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ↔ ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ∈ ℤ ) ) |
| 90 |
84 88 89
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑘 ∈ ℤ ( 8 · 𝑘 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ↔ ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ∈ ℤ ) ) |
| 91 |
83 90
|
mpbid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ∈ ℤ ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) ∈ ℤ ) |
| 93 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 94 |
93
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 95 |
92 94
|
zmulcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ∈ ℤ ) |
| 96 |
84
|
nnzi |
⊢ 8 ∈ ℤ |
| 97 |
|
2re |
⊢ 2 ∈ ℝ |
| 98 |
|
8re |
⊢ 8 ∈ ℝ |
| 99 |
|
2lt8 |
⊢ 2 < 8 |
| 100 |
97 98 99
|
ltleii |
⊢ 2 ≤ 8 |
| 101 |
|
eluz2 |
⊢ ( 8 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 8 ∈ ℤ ∧ 2 ≤ 8 ) ) |
| 102 |
6 96 100 101
|
mpbir3an |
⊢ 8 ∈ ( ℤ≥ ‘ 2 ) |
| 103 |
|
mulp1mod1 |
⊢ ( ( ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ∈ ℤ ∧ 8 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) mod 8 ) = 1 ) |
| 104 |
95 102 103
|
sylancl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) mod 8 ) = 1 ) |
| 105 |
|
1nn |
⊢ 1 ∈ ℕ |
| 106 |
|
prid1g |
⊢ ( 1 ∈ ℕ → 1 ∈ { 1 , 7 } ) |
| 107 |
105 106
|
mp1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → 1 ∈ { 1 , 7 } ) |
| 108 |
104 107
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) mod 8 ) ∈ { 1 , 7 } ) |
| 109 |
108
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) ) → ( ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) mod 8 ) ∈ { 1 , 7 } ) |
| 110 |
41 109
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) ) → ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) |
| 111 |
110
|
ex |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 = ( ( 8 · ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / 8 ) · 𝑛 ) ) + 1 ) → ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 112 |
39 111
|
sylbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) → ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 113 |
112
|
3ad2antl1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) → ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 114 |
113
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) → ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) |
| 115 |
|
2lgs |
⊢ ( 𝑃 ∈ ℙ → ( ( 2 /L 𝑃 ) = 1 ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 116 |
2 115
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 2 /L 𝑃 ) = 1 ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 117 |
116
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ( 2 /L 𝑃 ) = 1 ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 118 |
117
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) → ( ( 2 /L 𝑃 ) = 1 ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 119 |
114 118
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) → ( 2 /L 𝑃 ) = 1 ) |
| 120 |
119
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) → ( ( 2 /L 𝑃 ) mod 𝑃 ) = ( 1 mod 𝑃 ) ) |
| 121 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 122 |
|
eluzelre |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) |
| 123 |
|
eluz2gt1 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) |
| 124 |
122 123
|
jca |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ) |
| 125 |
|
1mod |
⊢ ( ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) → ( 1 mod 𝑃 ) = 1 ) |
| 126 |
2 121 124 125
|
4syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 1 mod 𝑃 ) = 1 ) |
| 127 |
126
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( 1 mod 𝑃 ) = 1 ) |
| 128 |
127
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) → ( 1 mod 𝑃 ) = 1 ) |
| 129 |
11 120 128
|
3eqtrd |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) → ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = 1 ) |
| 130 |
129
|
rexlimdva2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ∃ 𝑛 ∈ ℕ 𝑃 = ( ( 𝑛 · ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) → ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = 1 ) ) |
| 131 |
5 130
|
mpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = 1 ) |