| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnne0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ≠  0 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  𝑀  ≠  0 ) | 
						
							| 3 |  | nncn | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℂ ) | 
						
							| 4 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 5 |  | zcn | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℂ ) | 
						
							| 6 |  | divcan3 | ⊢ ( ( 𝑘  ∈  ℂ  ∧  𝑀  ∈  ℂ  ∧  𝑀  ≠  0 )  →  ( ( 𝑀  ·  𝑘 )  /  𝑀 )  =  𝑘 ) | 
						
							| 7 | 6 | 3coml | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑀  ≠  0  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑀  ·  𝑘 )  /  𝑀 )  =  𝑘 ) | 
						
							| 8 | 7 | 3expa | ⊢ ( ( ( 𝑀  ∈  ℂ  ∧  𝑀  ≠  0 )  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑀  ·  𝑘 )  /  𝑀 )  =  𝑘 ) | 
						
							| 9 | 5 8 | sylan2 | ⊢ ( ( ( 𝑀  ∈  ℂ  ∧  𝑀  ≠  0 )  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑀  ·  𝑘 )  /  𝑀 )  =  𝑘 ) | 
						
							| 10 | 9 | 3adantl2 | ⊢ ( ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  𝑀  ≠  0 )  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑀  ·  𝑘 )  /  𝑀 )  =  𝑘 ) | 
						
							| 11 |  | oveq1 | ⊢ ( ( 𝑀  ·  𝑘 )  =  𝑁  →  ( ( 𝑀  ·  𝑘 )  /  𝑀 )  =  ( 𝑁  /  𝑀 ) ) | 
						
							| 12 | 10 11 | sylan9req | ⊢ ( ( ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  𝑀  ≠  0 )  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑀  ·  𝑘 )  =  𝑁 )  →  𝑘  =  ( 𝑁  /  𝑀 ) ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  𝑀  ≠  0 )  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑀  ·  𝑘 )  =  𝑁 )  →  𝑘  ∈  ℤ ) | 
						
							| 14 | 12 13 | eqeltrrd | ⊢ ( ( ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  𝑀  ≠  0 )  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑀  ·  𝑘 )  =  𝑁 )  →  ( 𝑁  /  𝑀 )  ∈  ℤ ) | 
						
							| 15 | 14 | rexlimdva2 | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  𝑀  ≠  0 )  →  ( ∃ 𝑘  ∈  ℤ ( 𝑀  ·  𝑘 )  =  𝑁  →  ( 𝑁  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 16 |  | divcan2 | ⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑀  ∈  ℂ  ∧  𝑀  ≠  0 )  →  ( 𝑀  ·  ( 𝑁  /  𝑀 ) )  =  𝑁 ) | 
						
							| 17 | 16 | 3com12 | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  𝑀  ≠  0 )  →  ( 𝑀  ·  ( 𝑁  /  𝑀 ) )  =  𝑁 ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑁  /  𝑀 )  →  ( 𝑀  ·  𝑘 )  =  ( 𝑀  ·  ( 𝑁  /  𝑀 ) ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( 𝑘  =  ( 𝑁  /  𝑀 )  →  ( ( 𝑀  ·  𝑘 )  =  𝑁  ↔  ( 𝑀  ·  ( 𝑁  /  𝑀 ) )  =  𝑁 ) ) | 
						
							| 20 | 19 | rspcev | ⊢ ( ( ( 𝑁  /  𝑀 )  ∈  ℤ  ∧  ( 𝑀  ·  ( 𝑁  /  𝑀 ) )  =  𝑁 )  →  ∃ 𝑘  ∈  ℤ ( 𝑀  ·  𝑘 )  =  𝑁 ) | 
						
							| 21 | 20 | expcom | ⊢ ( ( 𝑀  ·  ( 𝑁  /  𝑀 ) )  =  𝑁  →  ( ( 𝑁  /  𝑀 )  ∈  ℤ  →  ∃ 𝑘  ∈  ℤ ( 𝑀  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 22 | 17 21 | syl | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  𝑀  ≠  0 )  →  ( ( 𝑁  /  𝑀 )  ∈  ℤ  →  ∃ 𝑘  ∈  ℤ ( 𝑀  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 23 | 15 22 | impbid | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  𝑀  ≠  0 )  →  ( ∃ 𝑘  ∈  ℤ ( 𝑀  ·  𝑘 )  =  𝑁  ↔  ( 𝑁  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 24 | 23 | 3expia | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 𝑀  ≠  0  →  ( ∃ 𝑘  ∈  ℤ ( 𝑀  ·  𝑘 )  =  𝑁  ↔  ( 𝑁  /  𝑀 )  ∈  ℤ ) ) ) | 
						
							| 25 | 3 4 24 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ≠  0  →  ( ∃ 𝑘  ∈  ℤ ( 𝑀  ·  𝑘 )  =  𝑁  ↔  ( 𝑁  /  𝑀 )  ∈  ℤ ) ) ) | 
						
							| 26 | 2 25 | mpd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( ∃ 𝑘  ∈  ℤ ( 𝑀  ·  𝑘 )  =  𝑁  ↔  ( 𝑁  /  𝑀 )  ∈  ℤ ) ) |