| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2nn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN ) | 
						
							| 2 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 3 |  | id |  |-  ( P || ( FermatNo ` N ) -> P || ( FermatNo ` N ) ) | 
						
							| 4 |  | fmtnoprmfac1 |  |-  ( ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. n e. NN P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) | 
						
							| 5 | 1 2 3 4 | syl3an |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> E. n e. NN P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) | 
						
							| 6 |  | 2z |  |-  2 e. ZZ | 
						
							| 7 |  | simp2 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> P e. ( Prime \ { 2 } ) ) | 
						
							| 8 |  | lgsvalmod |  |-  ( ( 2 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 /L P ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( 2 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( 2 /L P ) mod P ) ) | 
						
							| 10 | 6 7 9 | sylancr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( 2 /L P ) mod P ) ) | 
						
							| 11 | 10 | ad2antrr |  |-  ( ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) /\ n e. NN ) /\ P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( 2 /L P ) mod P ) ) | 
						
							| 12 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 13 | 12 | adantl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> n e. CC ) | 
						
							| 14 |  | 2nn |  |-  2 e. NN | 
						
							| 15 | 14 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. NN ) | 
						
							| 16 |  | eluzge2nn0 |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) | 
						
							| 17 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 18 | 16 17 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. NN0 ) | 
						
							| 19 | 15 18 | nnexpcld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 1 ) ) e. NN ) | 
						
							| 20 | 19 | nncnd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 1 ) ) e. CC ) | 
						
							| 21 | 20 | adantr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( 2 ^ ( N + 1 ) ) e. CC ) | 
						
							| 22 | 13 21 | mulcomd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( n x. ( 2 ^ ( N + 1 ) ) ) = ( ( 2 ^ ( N + 1 ) ) x. n ) ) | 
						
							| 23 |  | 8cn |  |-  8 e. CC | 
						
							| 24 | 23 | a1i |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> 8 e. CC ) | 
						
							| 25 |  | 0re |  |-  0 e. RR | 
						
							| 26 |  | 8pos |  |-  0 < 8 | 
						
							| 27 | 25 26 | gtneii |  |-  8 =/= 0 | 
						
							| 28 | 27 | a1i |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> 8 =/= 0 ) | 
						
							| 29 | 21 24 28 | divcan2d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( 8 x. ( ( 2 ^ ( N + 1 ) ) / 8 ) ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 30 | 29 | eqcomd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( 2 ^ ( N + 1 ) ) = ( 8 x. ( ( 2 ^ ( N + 1 ) ) / 8 ) ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( ( 2 ^ ( N + 1 ) ) x. n ) = ( ( 8 x. ( ( 2 ^ ( N + 1 ) ) / 8 ) ) x. n ) ) | 
						
							| 32 | 23 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 8 e. CC ) | 
						
							| 33 | 27 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 8 =/= 0 ) | 
						
							| 34 | 20 32 33 | divcld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( N + 1 ) ) / 8 ) e. CC ) | 
						
							| 35 | 34 | adantr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( ( 2 ^ ( N + 1 ) ) / 8 ) e. CC ) | 
						
							| 36 | 24 35 13 | mulassd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( ( 8 x. ( ( 2 ^ ( N + 1 ) ) / 8 ) ) x. n ) = ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) ) | 
						
							| 37 | 22 31 36 | 3eqtrd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( n x. ( 2 ^ ( N + 1 ) ) ) = ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) = ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) <-> P = ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) ) ) | 
						
							| 40 |  | oveq1 |  |-  ( P = ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) -> ( P mod 8 ) = ( ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) mod 8 ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) /\ P = ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) ) -> ( P mod 8 ) = ( ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) mod 8 ) ) | 
						
							| 42 |  | 3m1e2 |  |-  ( 3 - 1 ) = 2 | 
						
							| 43 |  | eluzle |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) | 
						
							| 44 | 42 43 | eqbrtrid |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 3 - 1 ) <_ N ) | 
						
							| 45 |  | 3re |  |-  3 e. RR | 
						
							| 46 | 45 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 3 e. RR ) | 
						
							| 47 |  | 1red |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 e. RR ) | 
						
							| 48 |  | eluzelre |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. RR ) | 
						
							| 49 | 46 47 48 | lesubaddd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 3 - 1 ) <_ N <-> 3 <_ ( N + 1 ) ) ) | 
						
							| 50 | 44 49 | mpbid |  |-  ( N e. ( ZZ>= ` 2 ) -> 3 <_ ( N + 1 ) ) | 
						
							| 51 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 52 |  | nn0sub |  |-  ( ( 3 e. NN0 /\ ( N + 1 ) e. NN0 ) -> ( 3 <_ ( N + 1 ) <-> ( ( N + 1 ) - 3 ) e. NN0 ) ) | 
						
							| 53 | 51 18 52 | sylancr |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 3 <_ ( N + 1 ) <-> ( ( N + 1 ) - 3 ) e. NN0 ) ) | 
						
							| 54 | 50 53 | mpbid |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N + 1 ) - 3 ) e. NN0 ) | 
						
							| 55 | 15 54 | nnexpcld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( ( N + 1 ) - 3 ) ) e. NN ) | 
						
							| 56 | 55 | nnzd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( ( N + 1 ) - 3 ) ) e. ZZ ) | 
						
							| 57 |  | oveq2 |  |-  ( k = ( 2 ^ ( ( N + 1 ) - 3 ) ) -> ( 8 x. k ) = ( 8 x. ( 2 ^ ( ( N + 1 ) - 3 ) ) ) ) | 
						
							| 58 | 57 | eqeq1d |  |-  ( k = ( 2 ^ ( ( N + 1 ) - 3 ) ) -> ( ( 8 x. k ) = ( 2 ^ ( N + 1 ) ) <-> ( 8 x. ( 2 ^ ( ( N + 1 ) - 3 ) ) ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 59 | 58 | adantl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ k = ( 2 ^ ( ( N + 1 ) - 3 ) ) ) -> ( ( 8 x. k ) = ( 2 ^ ( N + 1 ) ) <-> ( 8 x. ( 2 ^ ( ( N + 1 ) - 3 ) ) ) = ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 60 |  | cu2 |  |-  ( 2 ^ 3 ) = 8 | 
						
							| 61 | 60 | eqcomi |  |-  8 = ( 2 ^ 3 ) | 
						
							| 62 | 61 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 8 = ( 2 ^ 3 ) ) | 
						
							| 63 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 64 | 63 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 65 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) | 
						
							| 66 | 65 | peano2zd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. ZZ ) | 
						
							| 67 |  | 3z |  |-  3 e. ZZ | 
						
							| 68 | 67 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 3 e. ZZ ) | 
						
							| 69 |  | expsub |  |-  ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( ( N + 1 ) e. ZZ /\ 3 e. ZZ ) ) -> ( 2 ^ ( ( N + 1 ) - 3 ) ) = ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 3 ) ) ) | 
						
							| 70 | 64 66 68 69 | syl12anc |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( ( N + 1 ) - 3 ) ) = ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 3 ) ) ) | 
						
							| 71 | 62 70 | oveq12d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 8 x. ( 2 ^ ( ( N + 1 ) - 3 ) ) ) = ( ( 2 ^ 3 ) x. ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 3 ) ) ) ) | 
						
							| 72 |  | nnexpcl |  |-  ( ( 2 e. NN /\ 3 e. NN0 ) -> ( 2 ^ 3 ) e. NN ) | 
						
							| 73 | 14 51 72 | mp2an |  |-  ( 2 ^ 3 ) e. NN | 
						
							| 74 | 73 | nncni |  |-  ( 2 ^ 3 ) e. CC | 
						
							| 75 | 74 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ 3 ) e. CC ) | 
						
							| 76 |  | 2cn |  |-  2 e. CC | 
						
							| 77 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 78 |  | expne0i |  |-  ( ( 2 e. CC /\ 2 =/= 0 /\ 3 e. ZZ ) -> ( 2 ^ 3 ) =/= 0 ) | 
						
							| 79 | 76 77 67 78 | mp3an |  |-  ( 2 ^ 3 ) =/= 0 | 
						
							| 80 | 79 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ 3 ) =/= 0 ) | 
						
							| 81 | 20 75 80 | divcan2d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ 3 ) x. ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 3 ) ) ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 82 | 71 81 | eqtrd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 8 x. ( 2 ^ ( ( N + 1 ) - 3 ) ) ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 83 | 56 59 82 | rspcedvd |  |-  ( N e. ( ZZ>= ` 2 ) -> E. k e. ZZ ( 8 x. k ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 84 |  | 8nn |  |-  8 e. NN | 
						
							| 85 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 86 | 85 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. NN0 ) | 
						
							| 87 | 86 18 | nn0expcld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 1 ) ) e. NN0 ) | 
						
							| 88 | 87 | nn0zd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N + 1 ) ) e. ZZ ) | 
						
							| 89 |  | zdiv |  |-  ( ( 8 e. NN /\ ( 2 ^ ( N + 1 ) ) e. ZZ ) -> ( E. k e. ZZ ( 8 x. k ) = ( 2 ^ ( N + 1 ) ) <-> ( ( 2 ^ ( N + 1 ) ) / 8 ) e. ZZ ) ) | 
						
							| 90 | 84 88 89 | sylancr |  |-  ( N e. ( ZZ>= ` 2 ) -> ( E. k e. ZZ ( 8 x. k ) = ( 2 ^ ( N + 1 ) ) <-> ( ( 2 ^ ( N + 1 ) ) / 8 ) e. ZZ ) ) | 
						
							| 91 | 83 90 | mpbid |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( N + 1 ) ) / 8 ) e. ZZ ) | 
						
							| 92 | 91 | adantr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( ( 2 ^ ( N + 1 ) ) / 8 ) e. ZZ ) | 
						
							| 93 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 94 | 93 | adantl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> n e. ZZ ) | 
						
							| 95 | 92 94 | zmulcld |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) e. ZZ ) | 
						
							| 96 | 84 | nnzi |  |-  8 e. ZZ | 
						
							| 97 |  | 2re |  |-  2 e. RR | 
						
							| 98 |  | 8re |  |-  8 e. RR | 
						
							| 99 |  | 2lt8 |  |-  2 < 8 | 
						
							| 100 | 97 98 99 | ltleii |  |-  2 <_ 8 | 
						
							| 101 |  | eluz2 |  |-  ( 8 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 8 e. ZZ /\ 2 <_ 8 ) ) | 
						
							| 102 | 6 96 100 101 | mpbir3an |  |-  8 e. ( ZZ>= ` 2 ) | 
						
							| 103 |  | mulp1mod1 |  |-  ( ( ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) e. ZZ /\ 8 e. ( ZZ>= ` 2 ) ) -> ( ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) mod 8 ) = 1 ) | 
						
							| 104 | 95 102 103 | sylancl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) mod 8 ) = 1 ) | 
						
							| 105 |  | 1nn |  |-  1 e. NN | 
						
							| 106 |  | prid1g |  |-  ( 1 e. NN -> 1 e. { 1 , 7 } ) | 
						
							| 107 | 105 106 | mp1i |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> 1 e. { 1 , 7 } ) | 
						
							| 108 | 104 107 | eqeltrd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) mod 8 ) e. { 1 , 7 } ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) /\ P = ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) ) -> ( ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) mod 8 ) e. { 1 , 7 } ) | 
						
							| 110 | 41 109 | eqeltrd |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) /\ P = ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) ) -> ( P mod 8 ) e. { 1 , 7 } ) | 
						
							| 111 | 110 | ex |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( P = ( ( 8 x. ( ( ( 2 ^ ( N + 1 ) ) / 8 ) x. n ) ) + 1 ) -> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 112 | 39 111 | sylbid |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN ) -> ( P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) -> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 113 | 112 | 3ad2antl1 |  |-  ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) /\ n e. NN ) -> ( P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) -> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 114 | 113 | imp |  |-  ( ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) /\ n e. NN ) /\ P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) -> ( P mod 8 ) e. { 1 , 7 } ) | 
						
							| 115 |  | 2lgs |  |-  ( P e. Prime -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 116 | 2 115 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 117 | 116 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 118 | 117 | ad2antrr |  |-  ( ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) /\ n e. NN ) /\ P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 119 | 114 118 | mpbird |  |-  ( ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) /\ n e. NN ) /\ P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) -> ( 2 /L P ) = 1 ) | 
						
							| 120 | 119 | oveq1d |  |-  ( ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) /\ n e. NN ) /\ P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) -> ( ( 2 /L P ) mod P ) = ( 1 mod P ) ) | 
						
							| 121 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 122 |  | eluzelre |  |-  ( P e. ( ZZ>= ` 2 ) -> P e. RR ) | 
						
							| 123 |  | eluz2gt1 |  |-  ( P e. ( ZZ>= ` 2 ) -> 1 < P ) | 
						
							| 124 | 122 123 | jca |  |-  ( P e. ( ZZ>= ` 2 ) -> ( P e. RR /\ 1 < P ) ) | 
						
							| 125 |  | 1mod |  |-  ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) | 
						
							| 126 | 2 121 124 125 | 4syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( 1 mod P ) = 1 ) | 
						
							| 127 | 126 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( 1 mod P ) = 1 ) | 
						
							| 128 | 127 | ad2antrr |  |-  ( ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) /\ n e. NN ) /\ P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) -> ( 1 mod P ) = 1 ) | 
						
							| 129 | 11 120 128 | 3eqtrd |  |-  ( ( ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) /\ n e. NN ) /\ P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 ) | 
						
							| 130 | 129 | rexlimdva2 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( E. n e. NN P = ( ( n x. ( 2 ^ ( N + 1 ) ) ) + 1 ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 ) ) | 
						
							| 131 | 5 130 | mpd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = 1 ) |