| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelcn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. CC ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> N e. CC ) | 
						
							| 3 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 4 | 3 | adantr |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> A e. CC ) | 
						
							| 5 | 2 4 | mulcomd |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( N x. A ) = ( A x. N ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( N x. A ) mod N ) = ( ( A x. N ) mod N ) ) | 
						
							| 7 |  | eluz2nn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN ) | 
						
							| 8 | 7 | nnrpd |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. RR+ ) | 
						
							| 9 |  | mulmod0 |  |-  ( ( A e. ZZ /\ N e. RR+ ) -> ( ( A x. N ) mod N ) = 0 ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( A x. N ) mod N ) = 0 ) | 
						
							| 11 | 6 10 | eqtrd |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( N x. A ) mod N ) = 0 ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( N x. A ) mod N ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 13 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( N x. A ) mod N ) + 1 ) = 1 ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( ( N x. A ) mod N ) + 1 ) mod N ) = ( 1 mod N ) ) | 
						
							| 16 |  | eluzelre |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. RR ) | 
						
							| 17 | 16 | adantl |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> N e. RR ) | 
						
							| 18 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 19 | 18 | adantr |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> A e. RR ) | 
						
							| 20 | 17 19 | remulcld |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( N x. A ) e. RR ) | 
						
							| 21 |  | 1red |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> 1 e. RR ) | 
						
							| 22 | 8 | adantl |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> N e. RR+ ) | 
						
							| 23 |  | modaddmod |  |-  ( ( ( N x. A ) e. RR /\ 1 e. RR /\ N e. RR+ ) -> ( ( ( ( N x. A ) mod N ) + 1 ) mod N ) = ( ( ( N x. A ) + 1 ) mod N ) ) | 
						
							| 24 | 20 21 22 23 | syl3anc |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( ( N x. A ) mod N ) + 1 ) mod N ) = ( ( ( N x. A ) + 1 ) mod N ) ) | 
						
							| 25 |  | eluz2gt1 |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 < N ) | 
						
							| 26 | 16 25 | jca |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N e. RR /\ 1 < N ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( N e. RR /\ 1 < N ) ) | 
						
							| 28 |  | 1mod |  |-  ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( 1 mod N ) = 1 ) | 
						
							| 30 | 15 24 29 | 3eqtr3d |  |-  ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( N x. A ) + 1 ) mod N ) = 1 ) |