| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 |  |-  ( P = 2 -> ( P || ( FermatNo ` N ) <-> 2 || ( FermatNo ` N ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( P = 2 /\ N e. NN ) -> ( P || ( FermatNo ` N ) <-> 2 || ( FermatNo ` N ) ) ) | 
						
							| 3 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 4 |  | fmtnoodd |  |-  ( N e. NN0 -> -. 2 || ( FermatNo ` N ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( N e. NN -> -. 2 || ( FermatNo ` N ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( P = 2 /\ N e. NN ) -> -. 2 || ( FermatNo ` N ) ) | 
						
							| 7 | 6 | pm2.21d |  |-  ( ( P = 2 /\ N e. NN ) -> ( 2 || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 8 | 2 7 | sylbid |  |-  ( ( P = 2 /\ N e. NN ) -> ( P || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 9 | 8 | a1d |  |-  ( ( P = 2 /\ N e. NN ) -> ( P e. Prime -> ( P || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) ) | 
						
							| 10 | 9 | ex |  |-  ( P = 2 -> ( N e. NN -> ( P e. Prime -> ( P || ( FermatNo ` N ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) ) ) | 
						
							| 11 | 10 | 3impd |  |-  ( P = 2 -> ( ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 12 |  | simpr1 |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> N e. NN ) | 
						
							| 13 |  | neqne |  |-  ( -. P = 2 -> P =/= 2 ) | 
						
							| 14 | 13 | anim2i |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 15 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( ( P e. Prime /\ -. P = 2 ) -> P e. ( Prime \ { 2 } ) ) | 
						
							| 17 | 16 | ex |  |-  ( P e. Prime -> ( -. P = 2 -> P e. ( Prime \ { 2 } ) ) ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> ( -. P = 2 -> P e. ( Prime \ { 2 } ) ) ) | 
						
							| 19 | 18 | impcom |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> P e. ( Prime \ { 2 } ) ) | 
						
							| 20 |  | simpr3 |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> P || ( FermatNo ` N ) ) | 
						
							| 21 |  | fmtnoprmfac1lem |  |-  ( ( N e. NN /\ P e. ( Prime \ { 2 } ) /\ P || ( FermatNo ` N ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 22 | 12 19 20 21 | syl3anc |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) | 
						
							| 23 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 24 | 23 | ad2antll |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> P e. NN ) | 
						
							| 25 |  | 2z |  |-  2 e. ZZ | 
						
							| 26 | 25 | a1i |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> 2 e. ZZ ) | 
						
							| 27 | 13 | necomd |  |-  ( -. P = 2 -> 2 =/= P ) | 
						
							| 28 | 27 | adantr |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> 2 =/= P ) | 
						
							| 29 |  | 2prm |  |-  2 e. Prime | 
						
							| 30 | 29 | a1i |  |-  ( N e. NN -> 2 e. Prime ) | 
						
							| 31 | 30 | anim1i |  |-  ( ( N e. NN /\ P e. Prime ) -> ( 2 e. Prime /\ P e. Prime ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( 2 e. Prime /\ P e. Prime ) ) | 
						
							| 33 |  | prmrp |  |-  ( ( 2 e. Prime /\ P e. Prime ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) | 
						
							| 35 | 28 34 | mpbird |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( 2 gcd P ) = 1 ) | 
						
							| 36 |  | odzphi |  |-  ( ( P e. NN /\ 2 e. ZZ /\ ( 2 gcd P ) = 1 ) -> ( ( odZ ` P ) ` 2 ) || ( phi ` P ) ) | 
						
							| 37 | 24 26 35 36 | syl3anc |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( odZ ` P ) ` 2 ) || ( phi ` P ) ) | 
						
							| 38 |  | phiprm |  |-  ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) | 
						
							| 39 | 38 | ad2antll |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( phi ` P ) = ( P - 1 ) ) | 
						
							| 40 | 39 | breq2d |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( phi ` P ) <-> ( ( odZ ` P ) ` 2 ) || ( P - 1 ) ) ) | 
						
							| 41 |  | breq1 |  |-  ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( P - 1 ) <-> ( 2 ^ ( N + 1 ) ) || ( P - 1 ) ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( P - 1 ) <-> ( 2 ^ ( N + 1 ) ) || ( P - 1 ) ) ) | 
						
							| 43 |  | 2nn |  |-  2 e. NN | 
						
							| 44 | 43 | a1i |  |-  ( N e. NN -> 2 e. NN ) | 
						
							| 45 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 46 | 45 | nnnn0d |  |-  ( N e. NN -> ( N + 1 ) e. NN0 ) | 
						
							| 47 | 44 46 | nnexpcld |  |-  ( N e. NN -> ( 2 ^ ( N + 1 ) ) e. NN ) | 
						
							| 48 | 23 | nnnn0d |  |-  ( P e. Prime -> P e. NN0 ) | 
						
							| 49 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 50 |  | eluzle |  |-  ( P e. ( ZZ>= ` 2 ) -> 2 <_ P ) | 
						
							| 51 | 49 50 | syl |  |-  ( P e. Prime -> 2 <_ P ) | 
						
							| 52 |  | nn0ge2m1nn |  |-  ( ( P e. NN0 /\ 2 <_ P ) -> ( P - 1 ) e. NN ) | 
						
							| 53 | 48 51 52 | syl2anc |  |-  ( P e. Prime -> ( P - 1 ) e. NN ) | 
						
							| 54 | 47 53 | anim12i |  |-  ( ( N e. NN /\ P e. Prime ) -> ( ( 2 ^ ( N + 1 ) ) e. NN /\ ( P - 1 ) e. NN ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( 2 ^ ( N + 1 ) ) e. NN /\ ( P - 1 ) e. NN ) ) | 
						
							| 56 |  | nndivides |  |-  ( ( ( 2 ^ ( N + 1 ) ) e. NN /\ ( P - 1 ) e. NN ) -> ( ( 2 ^ ( N + 1 ) ) || ( P - 1 ) <-> E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( P - 1 ) ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( P - 1 ) <-> E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( P - 1 ) ) ) | 
						
							| 58 |  | eqcom |  |-  ( ( k x. ( 2 ^ ( N + 1 ) ) ) = ( P - 1 ) <-> ( P - 1 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) ) | 
						
							| 59 | 58 | a1i |  |-  ( ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) = ( P - 1 ) <-> ( P - 1 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) ) ) | 
						
							| 60 | 23 | nncnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 61 | 60 | adantl |  |-  ( ( N e. NN /\ P e. Prime ) -> P e. CC ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. NN ) -> P e. CC ) | 
						
							| 63 |  | 1cnd |  |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. NN ) -> 1 e. CC ) | 
						
							| 64 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. NN ) -> k e. CC ) | 
						
							| 66 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 67 | 3 66 | syl |  |-  ( N e. NN -> ( N + 1 ) e. NN0 ) | 
						
							| 68 | 44 67 | nnexpcld |  |-  ( N e. NN -> ( 2 ^ ( N + 1 ) ) e. NN ) | 
						
							| 69 | 68 | nncnd |  |-  ( N e. NN -> ( 2 ^ ( N + 1 ) ) e. CC ) | 
						
							| 70 | 69 | adantr |  |-  ( ( N e. NN /\ P e. Prime ) -> ( 2 ^ ( N + 1 ) ) e. CC ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. NN ) -> ( 2 ^ ( N + 1 ) ) e. CC ) | 
						
							| 72 | 65 71 | mulcld |  |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. NN ) -> ( k x. ( 2 ^ ( N + 1 ) ) ) e. CC ) | 
						
							| 73 | 62 63 72 | subadd2d |  |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. NN ) -> ( ( P - 1 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) <-> ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) = P ) ) | 
						
							| 74 | 73 | adantll |  |-  ( ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) /\ k e. NN ) -> ( ( P - 1 ) = ( k x. ( 2 ^ ( N + 1 ) ) ) <-> ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) = P ) ) | 
						
							| 75 |  | eqcom |  |-  ( ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) = P <-> P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) | 
						
							| 76 | 75 | a1i |  |-  ( ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) /\ k e. NN ) -> ( ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) = P <-> P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 77 | 59 74 76 | 3bitrd |  |-  ( ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) /\ k e. NN ) -> ( ( k x. ( 2 ^ ( N + 1 ) ) ) = ( P - 1 ) <-> P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 78 | 77 | rexbidva |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( P - 1 ) <-> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 79 | 78 | biimpd |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( E. k e. NN ( k x. ( 2 ^ ( N + 1 ) ) ) = ( P - 1 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 80 | 57 79 | sylbid |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( P - 1 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) -> ( ( 2 ^ ( N + 1 ) ) || ( P - 1 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 82 | 42 81 | sylbid |  |-  ( ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) /\ ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( P - 1 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 83 | 82 | ex |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( P - 1 ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) ) | 
						
							| 84 | 83 | com23 |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( P - 1 ) -> ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) ) | 
						
							| 85 | 40 84 | sylbid |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( ( odZ ` P ) ` 2 ) || ( phi ` P ) -> ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) ) | 
						
							| 86 | 37 85 | mpd |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime ) ) -> ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 87 | 86 | 3adantr3 |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> ( ( ( odZ ` P ) ` 2 ) = ( 2 ^ ( N + 1 ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 88 | 22 87 | mpd |  |-  ( ( -. P = 2 /\ ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) | 
						
							| 89 | 88 | ex |  |-  ( -. P = 2 -> ( ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) ) | 
						
							| 90 | 11 89 | pm2.61i |  |-  ( ( N e. NN /\ P e. Prime /\ P || ( FermatNo ` N ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( N + 1 ) ) ) + 1 ) ) |