Metamath Proof Explorer


Theorem fmtnoprmfac1

Description: Divisor of Fermat number (special form of Euler's result, see fmtnofac1 ): Let F_n be a Fermat number. Let p be a prime divisor of F_n. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021)

Ref Expression
Assertion fmtnoprmfac1 NPPFermatNoNkP=k2N+1+1

Proof

Step Hyp Ref Expression
1 breq1 P=2PFermatNoN2FermatNoN
2 1 adantr P=2NPFermatNoN2FermatNoN
3 nnnn0 NN0
4 fmtnoodd N0¬2FermatNoN
5 3 4 syl N¬2FermatNoN
6 5 adantl P=2N¬2FermatNoN
7 6 pm2.21d P=2N2FermatNoNkP=k2N+1+1
8 2 7 sylbid P=2NPFermatNoNkP=k2N+1+1
9 8 a1d P=2NPPFermatNoNkP=k2N+1+1
10 9 ex P=2NPPFermatNoNkP=k2N+1+1
11 10 3impd P=2NPPFermatNoNkP=k2N+1+1
12 simpr1 ¬P=2NPPFermatNoNN
13 neqne ¬P=2P2
14 13 anim2i P¬P=2PP2
15 eldifsn P2PP2
16 14 15 sylibr P¬P=2P2
17 16 ex P¬P=2P2
18 17 3ad2ant2 NPPFermatNoN¬P=2P2
19 18 impcom ¬P=2NPPFermatNoNP2
20 simpr3 ¬P=2NPPFermatNoNPFermatNoN
21 fmtnoprmfac1lem NP2PFermatNoNodP2=2N+1
22 12 19 20 21 syl3anc ¬P=2NPPFermatNoNodP2=2N+1
23 prmnn PP
24 23 ad2antll ¬P=2NPP
25 2z 2
26 25 a1i ¬P=2NP2
27 13 necomd ¬P=22P
28 27 adantr ¬P=2NP2P
29 2prm 2
30 29 a1i N2
31 30 anim1i NP2P
32 31 adantl ¬P=2NP2P
33 prmrp 2P2gcdP=12P
34 32 33 syl ¬P=2NP2gcdP=12P
35 28 34 mpbird ¬P=2NP2gcdP=1
36 odzphi P22gcdP=1odP2ϕP
37 24 26 35 36 syl3anc ¬P=2NPodP2ϕP
38 phiprm PϕP=P1
39 38 ad2antll ¬P=2NPϕP=P1
40 39 breq2d ¬P=2NPodP2ϕPodP2P1
41 breq1 odP2=2N+1odP2P12N+1P1
42 41 adantl ¬P=2NPodP2=2N+1odP2P12N+1P1
43 2nn 2
44 43 a1i N2
45 peano2nn NN+1
46 45 nnnn0d NN+10
47 44 46 nnexpcld N2N+1
48 23 nnnn0d PP0
49 prmuz2 PP2
50 eluzle P22P
51 49 50 syl P2P
52 nn0ge2m1nn P02PP1
53 48 51 52 syl2anc PP1
54 47 53 anim12i NP2N+1P1
55 54 adantl ¬P=2NP2N+1P1
56 nndivides 2N+1P12N+1P1kk2N+1=P1
57 55 56 syl ¬P=2NP2N+1P1kk2N+1=P1
58 eqcom k2N+1=P1P1=k2N+1
59 58 a1i ¬P=2NPkk2N+1=P1P1=k2N+1
60 23 nncnd PP
61 60 adantl NPP
62 61 adantr NPkP
63 1cnd NPk1
64 nncn kk
65 64 adantl NPkk
66 peano2nn0 N0N+10
67 3 66 syl NN+10
68 44 67 nnexpcld N2N+1
69 68 nncnd N2N+1
70 69 adantr NP2N+1
71 70 adantr NPk2N+1
72 65 71 mulcld NPkk2N+1
73 62 63 72 subadd2d NPkP1=k2N+1k2N+1+1=P
74 73 adantll ¬P=2NPkP1=k2N+1k2N+1+1=P
75 eqcom k2N+1+1=PP=k2N+1+1
76 75 a1i ¬P=2NPkk2N+1+1=PP=k2N+1+1
77 59 74 76 3bitrd ¬P=2NPkk2N+1=P1P=k2N+1+1
78 77 rexbidva ¬P=2NPkk2N+1=P1kP=k2N+1+1
79 78 biimpd ¬P=2NPkk2N+1=P1kP=k2N+1+1
80 57 79 sylbid ¬P=2NP2N+1P1kP=k2N+1+1
81 80 adantr ¬P=2NPodP2=2N+12N+1P1kP=k2N+1+1
82 42 81 sylbid ¬P=2NPodP2=2N+1odP2P1kP=k2N+1+1
83 82 ex ¬P=2NPodP2=2N+1odP2P1kP=k2N+1+1
84 83 com23 ¬P=2NPodP2P1odP2=2N+1kP=k2N+1+1
85 40 84 sylbid ¬P=2NPodP2ϕPodP2=2N+1kP=k2N+1+1
86 37 85 mpd ¬P=2NPodP2=2N+1kP=k2N+1+1
87 86 3adantr3 ¬P=2NPPFermatNoNodP2=2N+1kP=k2N+1+1
88 22 87 mpd ¬P=2NPPFermatNoNkP=k2N+1+1
89 88 ex ¬P=2NPPFermatNoNkP=k2N+1+1
90 11 89 pm2.61i NPPFermatNoNkP=k2N+1+1