Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|
2 |
1
|
adantr |
|
3 |
|
nnnn0 |
|
4 |
|
fmtnoodd |
|
5 |
3 4
|
syl |
|
6 |
5
|
adantl |
|
7 |
6
|
pm2.21d |
|
8 |
2 7
|
sylbid |
|
9 |
8
|
a1d |
|
10 |
9
|
ex |
|
11 |
10
|
3impd |
|
12 |
|
simpr1 |
|
13 |
|
neqne |
|
14 |
13
|
anim2i |
|
15 |
|
eldifsn |
|
16 |
14 15
|
sylibr |
|
17 |
16
|
ex |
|
18 |
17
|
3ad2ant2 |
|
19 |
18
|
impcom |
|
20 |
|
simpr3 |
|
21 |
|
fmtnoprmfac1lem |
|
22 |
12 19 20 21
|
syl3anc |
|
23 |
|
prmnn |
|
24 |
23
|
ad2antll |
|
25 |
|
2z |
|
26 |
25
|
a1i |
|
27 |
13
|
necomd |
|
28 |
27
|
adantr |
|
29 |
|
2prm |
|
30 |
29
|
a1i |
|
31 |
30
|
anim1i |
|
32 |
31
|
adantl |
|
33 |
|
prmrp |
|
34 |
32 33
|
syl |
|
35 |
28 34
|
mpbird |
|
36 |
|
odzphi |
|
37 |
24 26 35 36
|
syl3anc |
|
38 |
|
phiprm |
|
39 |
38
|
ad2antll |
|
40 |
39
|
breq2d |
|
41 |
|
breq1 |
|
42 |
41
|
adantl |
|
43 |
|
2nn |
|
44 |
43
|
a1i |
|
45 |
|
peano2nn |
|
46 |
45
|
nnnn0d |
|
47 |
44 46
|
nnexpcld |
|
48 |
23
|
nnnn0d |
|
49 |
|
prmuz2 |
|
50 |
|
eluzle |
|
51 |
49 50
|
syl |
|
52 |
|
nn0ge2m1nn |
|
53 |
48 51 52
|
syl2anc |
|
54 |
47 53
|
anim12i |
|
55 |
54
|
adantl |
|
56 |
|
nndivides |
|
57 |
55 56
|
syl |
|
58 |
|
eqcom |
|
59 |
58
|
a1i |
|
60 |
23
|
nncnd |
|
61 |
60
|
adantl |
|
62 |
61
|
adantr |
|
63 |
|
1cnd |
|
64 |
|
nncn |
|
65 |
64
|
adantl |
|
66 |
|
peano2nn0 |
|
67 |
3 66
|
syl |
|
68 |
44 67
|
nnexpcld |
|
69 |
68
|
nncnd |
|
70 |
69
|
adantr |
|
71 |
70
|
adantr |
|
72 |
65 71
|
mulcld |
|
73 |
62 63 72
|
subadd2d |
|
74 |
73
|
adantll |
|
75 |
|
eqcom |
|
76 |
75
|
a1i |
|
77 |
59 74 76
|
3bitrd |
|
78 |
77
|
rexbidva |
|
79 |
78
|
biimpd |
|
80 |
57 79
|
sylbid |
|
81 |
80
|
adantr |
|
82 |
42 81
|
sylbid |
|
83 |
82
|
ex |
|
84 |
83
|
com23 |
|
85 |
40 84
|
sylbid |
|
86 |
37 85
|
mpd |
|
87 |
86
|
3adantr3 |
|
88 |
22 87
|
mpd |
|
89 |
88
|
ex |
|
90 |
11 89
|
pm2.61i |
|