| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 | ⊢ ( 𝑃  =  2  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  ↔  2  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  ↔  2  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 3 |  | eluzge2nn0 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | fmtnoodd | ⊢ ( 𝑁  ∈  ℕ0  →  ¬  2  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ¬  2  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ¬  2  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 7 | 6 | pm2.21d | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 2  ∥  ( FermatNo ‘ 𝑁 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 8 | 2 7 | sylbid | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 9 | 8 | a1d | ⊢ ( ( 𝑃  =  2  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝑃  =  2  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  ∥  ( FermatNo ‘ 𝑁 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) ) | 
						
							| 11 | 10 | 3impd | ⊢ ( 𝑃  =  2  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 12 |  | simpr1 | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 13 |  | neqne | ⊢ ( ¬  𝑃  =  2  →  𝑃  ≠  2 ) | 
						
							| 14 | 13 | anim2i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 15 |  | eldifsn | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝑃  ∈  ℙ  →  ( ¬  𝑃  =  2  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ¬  𝑃  =  2  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 19 | 18 | impcom | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 20 |  | simpr3 | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 21 |  | fmtnoprmfac2lem1 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  1 ) | 
						
							| 22 | 12 19 20 21 | syl3anc | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  1 ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  𝑃  ∈  ℙ ) | 
						
							| 24 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  2  ∈  ℕ ) | 
						
							| 26 |  | oddprm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 27 | 16 26 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 28 | 27 | nnnn0d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 29 | 25 28 | nnexpcld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℕ ) | 
						
							| 30 | 29 | nnzd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) | 
						
							| 31 | 23 30 | jca | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 𝑃  ∈  ℙ  ∧  ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝑃  ∈  ℙ  →  ( ¬  𝑃  =  2  →  ( 𝑃  ∈  ℙ  ∧  ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) ) ) | 
						
							| 33 | 32 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ¬  𝑃  =  2  →  ( 𝑃  ∈  ℙ  ∧  ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( 𝑃  ∈  ℙ  ∧  ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) ) | 
						
							| 35 |  | modprm1div | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ )  →  ( ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  1  ↔  𝑃  ∥  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  1  ↔  𝑃  ∥  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 ) ) ) | 
						
							| 37 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  𝑃  ∈  ℕ ) | 
						
							| 39 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  2  ∈  ℤ ) | 
						
							| 41 | 13 | necomd | ⊢ ( ¬  𝑃  =  2  →  2  ≠  𝑃 ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  2  ≠  𝑃 ) | 
						
							| 43 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 44 | 43 | a1i | ⊢ ( ¬  𝑃  =  2  →  2  ∈  ℙ ) | 
						
							| 45 | 44 | anim2i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 𝑃  ∈  ℙ  ∧  2  ∈  ℙ ) ) | 
						
							| 46 | 45 | ancomd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 2  ∈  ℙ  ∧  𝑃  ∈  ℙ ) ) | 
						
							| 47 |  | prmrp | ⊢ ( ( 2  ∈  ℙ  ∧  𝑃  ∈  ℙ )  →  ( ( 2  gcd  𝑃 )  =  1  ↔  2  ≠  𝑃 ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( ( 2  gcd  𝑃 )  =  1  ↔  2  ≠  𝑃 ) ) | 
						
							| 49 | 42 48 | mpbird | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 2  gcd  𝑃 )  =  1 ) | 
						
							| 50 | 38 40 49 | 3jca | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 ) ) | 
						
							| 51 | 50 28 | jca | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 )  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 52 | 51 | ex | ⊢ ( 𝑃  ∈  ℙ  →  ( ¬  𝑃  =  2  →  ( ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 )  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) ) ) | 
						
							| 53 | 52 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ¬  𝑃  =  2  →  ( ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 )  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) ) ) | 
						
							| 54 | 53 | impcom | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 )  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 55 |  | odzdvds | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  2  ∈  ℤ  ∧  ( 2  gcd  𝑃 )  =  1 )  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝑃  ∥  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( 𝑃  ∥  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 57 |  | eluz2nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ ) | 
						
							| 58 | 57 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 60 |  | fmtnoprmfac1lem | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 61 | 59 19 20 60 | syl3anc | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 62 |  | breq1 | ⊢ ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ( 𝑃  −  1 )  /  2 )  ↔  ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ( 𝑃  −  1 )  /  2 )  ↔  ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 64 | 24 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ∈  ℕ ) | 
						
							| 65 |  | peano2nn | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 66 | 57 65 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 67 | 66 | nnnn0d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 68 | 64 67 | nnexpcld | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ ) | 
						
							| 69 |  | nndivides | ⊢ ( ( ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( ( 𝑃  −  1 )  /  2 )  ↔  ∃ 𝑘  ∈  ℕ ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 70 | 68 27 69 | syl2an | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 ) )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( ( 𝑃  −  1 )  /  2 )  ↔  ∃ 𝑘  ∈  ℕ ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 71 |  | eqcom | ⊢ ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( 𝑃  −  1 )  /  2 )  ↔  ( ( 𝑃  −  1 )  /  2 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 72 | 71 | a1i | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( 𝑃  −  1 )  /  2 )  ↔  ( ( 𝑃  −  1 )  /  2 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 73 | 37 | nncnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 74 |  | peano2cnm | ⊢ ( 𝑃  ∈  ℂ  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 75 | 73 74 | syl | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 78 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 79 | 68 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℕ ) | 
						
							| 80 | 78 79 | nnmulcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ∈  ℕ ) | 
						
							| 81 | 80 | nncnd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ∈  ℂ ) | 
						
							| 82 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 83 | 82 | a1i | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 84 |  | divmul3 | ⊢ ( ( ( 𝑃  −  1 )  ∈  ℂ  ∧  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 𝑃  −  1 )  /  2 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ↔  ( 𝑃  −  1 )  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ·  2 ) ) ) | 
						
							| 85 | 77 81 83 84 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑃  −  1 )  /  2 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ↔  ( 𝑃  −  1 )  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ·  2 ) ) ) | 
						
							| 86 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 88 | 68 | nncnd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 89 | 88 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 90 |  | 2cnd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  2  ∈  ℂ ) | 
						
							| 91 | 87 89 90 | mulassd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ·  2 )  =  ( 𝑘  ·  ( ( 2 ↑ ( 𝑁  +  1 ) )  ·  2 ) ) ) | 
						
							| 92 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 93 | 65 | nnnn0d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 94 | 92 93 | expp1d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( ( 𝑁  +  1 )  +  1 ) )  =  ( ( 2 ↑ ( 𝑁  +  1 ) )  ·  2 ) ) | 
						
							| 95 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 96 |  | add1p1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  2 ) ) | 
						
							| 97 | 95 96 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  2 ) ) | 
						
							| 98 | 97 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( ( 𝑁  +  1 )  +  1 ) )  =  ( 2 ↑ ( 𝑁  +  2 ) ) ) | 
						
							| 99 | 94 98 | eqtr3d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ·  2 )  =  ( 2 ↑ ( 𝑁  +  2 ) ) ) | 
						
							| 100 | 57 99 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ·  2 )  =  ( 2 ↑ ( 𝑁  +  2 ) ) ) | 
						
							| 101 | 100 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ·  2 )  =  ( 2 ↑ ( 𝑁  +  2 ) ) ) | 
						
							| 102 | 101 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  ( ( 2 ↑ ( 𝑁  +  1 ) )  ·  2 ) )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) ) ) | 
						
							| 103 | 91 102 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ·  2 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) ) ) | 
						
							| 104 | 103 | eqeq2d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃  −  1 )  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ·  2 )  ↔  ( 𝑃  −  1 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) ) ) ) | 
						
							| 105 | 73 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  𝑃  ∈  ℂ ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  𝑃  ∈  ℂ ) | 
						
							| 107 |  | 1cnd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 108 |  | id | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ ) | 
						
							| 109 | 24 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 110 | 108 109 | nnaddcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  ∈  ℕ ) | 
						
							| 111 | 110 | nnnn0d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  ∈  ℕ0 ) | 
						
							| 112 | 57 111 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  +  2 )  ∈  ℕ0 ) | 
						
							| 113 | 64 112 | nnexpcld | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  2 ) )  ∈  ℕ ) | 
						
							| 114 | 113 | nncnd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  2 ) )  ∈  ℂ ) | 
						
							| 115 | 114 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( 𝑁  +  2 ) )  ∈  ℂ ) | 
						
							| 116 | 87 115 | mulcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  ∈  ℂ ) | 
						
							| 117 | 106 107 116 | subadd2d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃  −  1 )  =  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  ↔  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  =  𝑃 ) ) | 
						
							| 118 |  | eqcom | ⊢ ( ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  =  𝑃  ↔  𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) | 
						
							| 119 | 118 | a1i | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  =  𝑃  ↔  𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 120 | 104 117 119 | 3bitrd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃  −  1 )  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  ·  2 )  ↔  𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 121 | 72 85 120 | 3bitrd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( 𝑃  −  1 )  /  2 )  ↔  𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 122 | 121 | rexbidva | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  ( ∃ 𝑘  ∈  ℕ ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( 𝑃  −  1 )  /  2 )  ↔  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 123 | 122 | biimpd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  ( ∃ 𝑘  ∈  ℕ ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 124 | 123 | adantrr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 ) )  →  ( ∃ 𝑘  ∈  ℕ ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 125 | 70 124 | sylbid | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 ) )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 126 | 125 | expr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  ( ¬  𝑃  =  2  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 127 | 126 | 3adant3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ¬  𝑃  =  2  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 128 | 127 | impcom | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) )  →  ( ( 2 ↑ ( 𝑁  +  1 ) )  ∥  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 130 | 63 129 | sylbid | ⊢ ( ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 131 | 130 | ex | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  =  ( 2 ↑ ( 𝑁  +  1 ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 132 | 61 131 | mpd | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 2 )  ∥  ( ( 𝑃  −  1 )  /  2 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 133 | 56 132 | sylbid | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( 𝑃  ∥  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 134 | 36 133 | sylbid | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ( ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  1  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 135 | 22 134 | mpd | ⊢ ( ( ¬  𝑃  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) | 
						
							| 136 | 135 | ex | ⊢ ( ¬  𝑃  =  2  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 137 | 11 136 | pm2.61i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) |