| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( 𝑃 = 2 → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ↔ 2 ∥ ( FermatNo ‘ 𝑁 ) ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ↔ 2 ∥ ( FermatNo ‘ 𝑁 ) ) ) |
| 3 |
|
eluzge2nn0 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ0 ) |
| 4 |
|
fmtnoodd |
⊢ ( 𝑁 ∈ ℕ0 → ¬ 2 ∥ ( FermatNo ‘ 𝑁 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ¬ 2 ∥ ( FermatNo ‘ 𝑁 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ 2 ∥ ( FermatNo ‘ 𝑁 ) ) |
| 7 |
6
|
pm2.21d |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 2 ∥ ( FermatNo ‘ 𝑁 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 8 |
2 7
|
sylbid |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 9 |
8
|
a1d |
⊢ ( ( 𝑃 = 2 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) ) |
| 10 |
9
|
ex |
⊢ ( 𝑃 = 2 → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( FermatNo ‘ 𝑁 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) ) ) |
| 11 |
10
|
3impd |
⊢ ( 𝑃 = 2 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 12 |
|
simpr1 |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 13 |
|
neqne |
⊢ ( ¬ 𝑃 = 2 → 𝑃 ≠ 2 ) |
| 14 |
13
|
anim2i |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
| 15 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
| 16 |
14 15
|
sylibr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
| 17 |
16
|
ex |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 𝑃 = 2 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ) |
| 18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ¬ 𝑃 = 2 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ) |
| 19 |
18
|
impcom |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
| 20 |
|
simpr3 |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) |
| 21 |
|
fmtnoprmfac2lem1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = 1 ) |
| 22 |
12 19 20 21
|
syl3anc |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = 1 ) |
| 23 |
|
simpl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → 𝑃 ∈ ℙ ) |
| 24 |
|
2nn |
⊢ 2 ∈ ℕ |
| 25 |
24
|
a1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → 2 ∈ ℕ ) |
| 26 |
|
oddprm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
| 27 |
16 26
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
| 28 |
27
|
nnnn0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) |
| 29 |
25 28
|
nnexpcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) ∈ ℕ ) |
| 30 |
29
|
nnzd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) ∈ ℤ ) |
| 31 |
23 30
|
jca |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 𝑃 ∈ ℙ ∧ ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) ∈ ℤ ) ) |
| 32 |
31
|
ex |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 𝑃 = 2 → ( 𝑃 ∈ ℙ ∧ ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) ∈ ℤ ) ) ) |
| 33 |
32
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ¬ 𝑃 = 2 → ( 𝑃 ∈ ℙ ∧ ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) ∈ ℤ ) ) ) |
| 34 |
33
|
impcom |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( 𝑃 ∈ ℙ ∧ ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) ∈ ℤ ) ) |
| 35 |
|
modprm1div |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) ∈ ℤ ) → ( ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = 1 ↔ 𝑃 ∥ ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) − 1 ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = 1 ↔ 𝑃 ∥ ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) − 1 ) ) ) |
| 37 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → 𝑃 ∈ ℕ ) |
| 39 |
|
2z |
⊢ 2 ∈ ℤ |
| 40 |
39
|
a1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → 2 ∈ ℤ ) |
| 41 |
13
|
necomd |
⊢ ( ¬ 𝑃 = 2 → 2 ≠ 𝑃 ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → 2 ≠ 𝑃 ) |
| 43 |
|
2prm |
⊢ 2 ∈ ℙ |
| 44 |
43
|
a1i |
⊢ ( ¬ 𝑃 = 2 → 2 ∈ ℙ ) |
| 45 |
44
|
anim2i |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 𝑃 ∈ ℙ ∧ 2 ∈ ℙ ) ) |
| 46 |
45
|
ancomd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 2 ∈ ℙ ∧ 𝑃 ∈ ℙ ) ) |
| 47 |
|
prmrp |
⊢ ( ( 2 ∈ ℙ ∧ 𝑃 ∈ ℙ ) → ( ( 2 gcd 𝑃 ) = 1 ↔ 2 ≠ 𝑃 ) ) |
| 48 |
46 47
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( ( 2 gcd 𝑃 ) = 1 ↔ 2 ≠ 𝑃 ) ) |
| 49 |
42 48
|
mpbird |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 2 gcd 𝑃 ) = 1 ) |
| 50 |
38 40 49
|
3jca |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) ) |
| 51 |
50 28
|
jca |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| 52 |
51
|
ex |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 𝑃 = 2 → ( ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) ) ) |
| 53 |
52
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ¬ 𝑃 = 2 → ( ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) ) ) |
| 54 |
53
|
impcom |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| 55 |
|
odzdvds |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ( 2 gcd 𝑃 ) = 1 ) ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) → ( 𝑃 ∥ ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( 𝑃 ∥ ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 57 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
| 58 |
57
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
| 59 |
58
|
adantl |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 60 |
|
fmtnoprmfac1lem |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 61 |
59 19 20 60
|
syl3anc |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 62 |
|
breq1 |
⊢ ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ( 𝑃 − 1 ) / 2 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 63 |
62
|
adantl |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ( 𝑃 − 1 ) / 2 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 64 |
24
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℕ ) |
| 65 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
| 66 |
57 65
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 + 1 ) ∈ ℕ ) |
| 67 |
66
|
nnnn0d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 68 |
64 67
|
nnexpcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ ) |
| 69 |
|
nndivides |
⊢ ( ( ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( ( 𝑃 − 1 ) / 2 ) ↔ ∃ 𝑘 ∈ ℕ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 70 |
68 27 69
|
syl2an |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( ( 𝑃 − 1 ) / 2 ) ↔ ∃ 𝑘 ∈ ℕ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 71 |
|
eqcom |
⊢ ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ↔ ( ( 𝑃 − 1 ) / 2 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 72 |
71
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ↔ ( ( 𝑃 − 1 ) / 2 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 73 |
37
|
nncnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 74 |
|
peano2cnm |
⊢ ( 𝑃 ∈ ℂ → ( 𝑃 − 1 ) ∈ ℂ ) |
| 75 |
73 74
|
syl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 − 1 ) ∈ ℂ ) |
| 76 |
75
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑃 − 1 ) ∈ ℂ ) |
| 77 |
76
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 − 1 ) ∈ ℂ ) |
| 78 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 79 |
68
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℕ ) |
| 80 |
78 79
|
nnmulcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ∈ ℕ ) |
| 81 |
80
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
| 82 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 83 |
82
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 84 |
|
divmul3 |
⊢ ( ( ( 𝑃 − 1 ) ∈ ℂ ∧ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝑃 − 1 ) / 2 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ↔ ( 𝑃 − 1 ) = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) · 2 ) ) ) |
| 85 |
77 81 83 84
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑃 − 1 ) / 2 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) ↔ ( 𝑃 − 1 ) = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) · 2 ) ) ) |
| 86 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 87 |
86
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 88 |
68
|
nncnd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 89 |
88
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 90 |
|
2cnd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 2 ∈ ℂ ) |
| 91 |
87 89 90
|
mulassd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) · 2 ) = ( 𝑘 · ( ( 2 ↑ ( 𝑁 + 1 ) ) · 2 ) ) ) |
| 92 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 93 |
65
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 94 |
92 93
|
expp1d |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( ( 𝑁 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑁 + 1 ) ) · 2 ) ) |
| 95 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 96 |
|
add1p1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + 2 ) ) |
| 97 |
95 96
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + 2 ) ) |
| 98 |
97
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( ( 𝑁 + 1 ) + 1 ) ) = ( 2 ↑ ( 𝑁 + 2 ) ) ) |
| 99 |
94 98
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 ↑ ( 𝑁 + 1 ) ) · 2 ) = ( 2 ↑ ( 𝑁 + 2 ) ) ) |
| 100 |
57 99
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) · 2 ) = ( 2 ↑ ( 𝑁 + 2 ) ) ) |
| 101 |
100
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) · 2 ) = ( 2 ↑ ( 𝑁 + 2 ) ) ) |
| 102 |
101
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( ( 2 ↑ ( 𝑁 + 1 ) ) · 2 ) ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) ) |
| 103 |
91 102
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) · 2 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) ) |
| 104 |
103
|
eqeq2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 − 1 ) = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) · 2 ) ↔ ( 𝑃 − 1 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) ) ) |
| 105 |
73
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℂ ) |
| 106 |
105
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
| 107 |
|
1cnd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) |
| 108 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
| 109 |
24
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
| 110 |
108 109
|
nnaddcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 2 ) ∈ ℕ ) |
| 111 |
110
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 2 ) ∈ ℕ0 ) |
| 112 |
57 111
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 + 2 ) ∈ ℕ0 ) |
| 113 |
64 112
|
nnexpcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( 𝑁 + 2 ) ) ∈ ℕ ) |
| 114 |
113
|
nncnd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ ( 𝑁 + 2 ) ) ∈ ℂ ) |
| 115 |
114
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( 𝑁 + 2 ) ) ∈ ℂ ) |
| 116 |
87 115
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) ∈ ℂ ) |
| 117 |
106 107 116
|
subadd2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 − 1 ) = ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) ↔ ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) = 𝑃 ) ) |
| 118 |
|
eqcom |
⊢ ( ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) = 𝑃 ↔ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) |
| 119 |
118
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) = 𝑃 ↔ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 120 |
104 117 119
|
3bitrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 − 1 ) = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) · 2 ) ↔ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 121 |
72 85 120
|
3bitrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ↔ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 122 |
121
|
rexbidva |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( ∃ 𝑘 ∈ ℕ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ↔ ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 123 |
122
|
biimpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( ∃ 𝑘 ∈ ℕ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 124 |
123
|
adantrr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) ) → ( ∃ 𝑘 ∈ ℕ ( 𝑘 · ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 125 |
70 124
|
sylbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 126 |
125
|
expr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( ¬ 𝑃 = 2 → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) ) |
| 127 |
126
|
3adant3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ( ¬ 𝑃 = 2 → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) ) |
| 128 |
127
|
impcom |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 129 |
128
|
adantr |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) → ( ( 2 ↑ ( 𝑁 + 1 ) ) ∥ ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 130 |
63 129
|
sylbid |
⊢ ( ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) ∧ ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 131 |
130
|
ex |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) ) |
| 132 |
61 131
|
mpd |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( ( odℤ ‘ 𝑃 ) ‘ 2 ) ∥ ( ( 𝑃 − 1 ) / 2 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 133 |
56 132
|
sylbid |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( 𝑃 ∥ ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) − 1 ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 134 |
36 133
|
sylbid |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ( ( ( 2 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = 1 → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 135 |
22 134
|
mpd |
⊢ ( ( ¬ 𝑃 = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) |
| 136 |
135
|
ex |
⊢ ( ¬ 𝑃 = 2 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) ) |
| 137 |
11 136
|
pm2.61i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 𝑁 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 𝑁 + 2 ) ) ) + 1 ) ) |